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tice it would have, for the time being, no e�ect,
since the characteristic periods of the illness have
not been measured in these terms.
Epidemics transmitted by vectors come to an end

either when the susceptible population has been
su�ciently exposed so that the replication of the
virus is slowed down (the classical consideration in
SIR models) or when the vector's population is dec-
imated by other (for example, climatic) reasons.
The model shows that both situations can be dis-
tinguished in terms of the mortality statistics.
We have also shown that the total mortality of

the epidemic is not di�cult to adjust by changing
the death probability of the toxic phase, and as
such, it is not a demanding test for a model. The
daily mortality, when normalized, shows sensitivity
to the mosquito abundance, specially in the evo-
lution times involved, since the general qualitative
shape appears to be �xed. In particular, the date in
which the epidemic reaches half the total mortality
is advanced by larger mosquito populations. How-
ever, only comparison of the simulated and histor-
ical daily mortality put enough constraints to the
free data in the model (date of arrival of infected
people and mosquito population) to allow for a se-
lection of possible combinations of their values.
As successful as the model appears to be, it is

completely unable to produce the total mortality
in the city, or the spatial extension of the full epi-
demic. The simulations produce with BSx4 less
than 4500 deaths, while in the historic record, the
total mortality in the city is above 13000 cases.
The historical account, and the recorded data, show
that after the initial San Telmo focus has devel-
oped, a second focus in the police district 13 (see
Fig. 2) developed, shortly several other foci de-
veloped that could not be tracked [4]. Unless the
spreading of the illness by infected humans is intro-
duced (or some other method to make long jumps
by the illness), such events cannot be described.
It is worth noticing that the mobility patterns in
1871 are expected to be drastically di�erent from
present patterns, and as such, the application of
models with human mobility [43] is not straightfor-
ward and requires a historical study.
One of the most important conclusions of this

work is that the logical consistency of mathemati-
cal modeling puts a limit to ad-hoc hypotheses, so
often used in a-posteriori explanations, as it forces
to accept not just the desired consequence of the

hypotheses, but all other consequences as well.
Last, eco-epidemiological models are adjusted

to vector populations pre-existing the actual epi-
demics and can therefore be used in prevention to
determine epidemic risk and monitor eradication
campaigns. In the present work, the tuning was
performed in epidemic data only because it is ac-
tually impossible to know the environmental con-
ditions more than one hundred years ago. Yet, our
wild initial guess for the density of breeding sites
resulted su�ciently close to allow further tuning.
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A Appendix

i. Populations and events of the stochastic
transmission model

We consider a two dimensional space as a mesh
of squared patches where the dynamics of vec-
tors, hosts and the disease take place. Only adult
mosquitoes, Flyers, can �y from one patch to a
next one according to a di�usion-like process. The
coordinates of a patch are given by two indices, i
and j, corresponding to the row and column in the
mesh. If Xk is a subpopulation in the stage k, then
Xk(i, j) is the Xk subpopulation in the patch of
coordinates (i, j).
Population of both hosts (Humans) and vectors

(Aedes aegypti) were divided into subpopulations
representing disease status: SEI for the vectors and
SEIrRTD for the human population.
Ten di�erent subpopulations for the mosquito

were taken into account, three immature subpopu-
lations: eggs E(i,j), larvae L(i,j) and pupae P(i,j),
and seven adult subpopulations: non parous adults
A1(i,j), susceptible �yers Fs(i,j), exposed �yers
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Fe(i,j), infectious �yers Fi(i,j) and parous adults
in the three disease status: susceptible A2s(i,j), ex-
posed A2e(i,j) and infectious A2i(i,j).
The A1(i,j) is always susceptible, after a blood

meal it becomes a �yer, susceptible Fs(i,j) or ex-
posed Fe(i,j), depending on the disease status of
the host. If the host is infectious, A1(i,j) becomes
an exposed �yer Fe(i,j) but if the host is not infec-
tious, then the A1(i,j) becomes a susceptible �yer
Fs(i,j). The transmission of the virus depends not
only on the contact between vector and host but
also on the transmission probability of the virus.
In this case, we have two transmission probabili-
ties: the transmission probability from host to vec-
tor ahv and the transmission probability from vec-
tor to host avh.
Human population Nh(i,j) was split into seven

di�erent subpopulations according to the disease
status: susceptible humans Hs(i,j), exposed hu-
mans He(i,j), infectious humans Hi(i,j), humans in
remission state Hr(i,j), toxic humans Ht(i,j), re-
moved humans HR(i,j) and dead humans because
of the disease Hd(i,j).
The evolution of the seventeen subpopulations is

a�ected by events that occur at rates that depend
on subpopulation values and some of them also on
temperature, which is a function of time since it
changes over the course of the year seasonally [8,9].

ii. Events related to immature stages

Table 4 summarizes the events and rates related to
immature stages of the mosquito during their �rst
gonotrophic cycle. The construction of the transi-
tion rates and the election of model parameters re-
lated to the mosquito biology such as: memortality
of eggs, elr hatching rate, ml mortality of larvae, α
density-dependent mortality of larvae, lpr pupation
rate, mp: mortality of pupae, par pupae into adults
development coe�cient and the ef emergence fac-
tor were described in detail previously [8, 9].
The natural regulation of Aedes aegypti popula-

tions is due to intra-speci�c competition for food
and other resources in the larval stage. This regu-
lation was incorporated into the model as a density-
dependent transition probability which introduces
the necessary nonlinearities that prevent a Malthu-
sian growth of the population. This e�ect was in-
corporated as a nonlinear correction to the temper-
ature dependent larval mortality.

Then, larval mortality can be written as:
mlL(i,j) +αL(i,j)× (L(i,j)−1) where the value of α
can be further decomposed as α = α0/BS(i,j) with
α0 being associated with the carrying capacity of
one (standardised) breeding site and BS(i,j) being
the density of breeding sites in the (i, j) patch [8,9].

iii. Events related to the adult stage

Aedes aegypti females (A1 and A2) require blood
to complete their gonotrophic cycles. In this pro-
cess, the female may ingest viruses with the blood
meal from an infectious human during the human
Viremic Period V P . The viruses develop within
the mosquito during the Extrinsic Incubation Pe-
riod EIP and then are reinjected into the blood
stream of a new susceptible human with the saliva
of the mosquito in later blood meals. The virus
in the exposed human develops during the Intrin-
sic incubation Period IIP and then begin to cir-
culate in the blood stream (Viremic Period), the
human becoming infectious. The �ow from sus-
ceptible to exposed subpopulations (in the vector
and the host) depends not only on the contact be-
tween vector and host but also on the transmission
probability of the virus. In our case, there are two
transmission probabilities: the transmission proba-
bility from host to vector ahv and the transmission
probability from vector to host avh.
The events related to the adult stage are shown

in Table 5 to 8. Table 5 summarizes the events and
rates related to adults during their �rst gonotrophic
cycle and related to oviposition by �yers according
to their disease status.
Table 6 and Table 7 summarize the events and

rates related to adult 2 gonotrophic cycles, exposed
Adults 2 and exposed �yers becoming infectious
and human contagion.
Table 8 summarizes the events and rates related

to non parous adult (Adult 2) and Flyer death.

iv. Events related to �yer dispersal

Some experimental results and observational stud-
ies show that the Aedes aegypti dispersal is driven
by the availability of oviposition sites [44�46]. Ac-
cording to these observations, we considered that
only the Flyers F(i,j) can �y from patch to patch
in search of oviposition sites. The implementation
of �yer dispersal has been described elsewhere [9].
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Event E�ect Transition rate
Egg death E(i,j) → E(i,j) − 1 me× E(i,j)

Egg hatching E(i,j) → E(i,j)−1 L(i,j) →
L(i,j) + 1

elr × E(i,j)

Larval death L(i,j) → L(i,j) − 1 ml × L(i,j) + α× L(i,j) × (L(i,j) − 1)
Pupation L(i,j) → L(i,j)−1 P(i,j) →

P(i,j) + 1
lpr × L(i,j)

Pupal death P(i,j) → P(i,j) − 1 (mp+ par × (1− (ef/2)))× P(i,j)

Adult emergence P(i,j) → P(i,j) − 1
A1(i,j) → A1(i,j) + 1

par × (ef/2)× P(i,j)

Table 4: Event type, e�ects on the populations and transition rates for the developmental model. The
coe�cients are me: mortality of eggs; elr: hatching rate; ml: mortality of larvae; α: density-dependent
mortality of larvae; lpr: pupation rate; mp: mortality of pupae; par: pupae into adults development
coe�cient; ef : emergence factor. The values of the coe�cients are available in subsections vi. and vii..

Event E�ect Transition rate
Adults 1 Death A1(i,j) → A1(i,j) − 1 ma×A1(i,j)

I Gonotrophic cycle
with virus exposure

A1(i,j) → A1(i,j) − 1
Fe(i,j) → Fe(i,j) + 1

cycle1 × A1(i,j) × (Hi(i,j)/Nh(i,j)) ×
ahv

I Gonotrophic cycle
without virus exposure

A1(i,j) → A1(i,j) − 1
Fs(i,j) → Fs(i,j) + 1

cycle1 × A1(i,j) × ((((Nh(i,j) −
Hi(i,j))/Nh(i,j)) + (1 − ahv) ×
(Hi(i,j)/Nh(i,j)))

Oviposition of suscep-
tible �yers

E(i,j) → E(i,j) + egn
Fs(i,j) → Fs(i,j) − 1
A2s(i,j) → A2s(i,j) + 1

ovr(i,j) × Fs(i,j)

Oviposition of exposed
�yers

E(i,j) → E(i,j) + egn
Fe(i,j) → Fe(i,j) − 1
A2e(i,j) → A2e(i,j) + 1

ovr(i,j) × Fe(i,j)

Oviposition of infected
�yers

E(i,j) → E(i,j) + egn
F i(i,j) → Fi(i,j) − 1
A2i(i,j) → A2i(i,j) + 1

ovr(i,j) × Fi(i,j)

Table 5: Event type, e�ects on the subpopulations and transition rates for the developmental model. The
coe�cients are ma: mortality of adults; cycle1: gonotrophic cycle coe�cient (number of daily cycles)
for adult females in stages A1.; ahv: transmission probability from host to vector; ovr(i,j): oviposition
rate by �yers in the (i,j) patch; egn: average number of eggs laid in an oviposition. The values of the
coe�cients are available in Table 1, subsections vi., vii., viii. and ix..

The general rate of the dispersal event is given
by: β × F(i,j), where β is the dispersal coe�cient
and F(i,j) is the Flyer population which can be sus-
ceptible Fs(i,j), exposed Fe(i,j) or infectious Fi(i,j)
depending on the disease status.
The dispersal coe�cient β can be written as

β =


0 if the patches are disjoint

diff/d2ij if the patches have

at least a common point

(3)

where dij is the distance between the centres of
the patches and diff is a di�usion-like coe�cient
so that dispersal is compatible with a di�usion-like
process [9].

v. Events related to human population

Human contagion has been already described in Ta-
ble 7. Table 9 summarizes the events and rates in
which humans are involved. The human popula-
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Event E�ect Transition rate
II Gonotrophic cycle
of susceptible Adults 2
with virus exposure

A2s(i,j) → A2s(i,j) − 1
Fe(i,j) → Fe(i,j) + 1

cycle2×A2s(i,j) × (Hi(i,j)/Nh(i,j))×
ahv

II Gonotrophic cycle
of susceptible Adults 2
without virus exposure

A2s(i,j) → A1(i,j) − 1
Fs(i,j) → Fs(i,j) + 1

cycle2 × A2s(i,j) × ((((Nh(i,j) −
Hi(i,j))/Nh(i,j)) + (1 − ahv) ×
(Hi(i,j)/Nh(i,j)))

II Gonotrophic cycle of
exposed Adults 2

A2e(i,j) → A2e(i,j) − 1
Fe(i,j) → Fe(i,j) + 1

cycle2×A2e(i,j)

Table 6: Event type, e�ects on the subpopulations and transition rates for the developmental model.
The coe�cients are cycle2: gonotrophic cycle coe�cient (number of daily cycles) for adult females in
stages A2.; ahv: transmission probability from host to vector. The values of the coe�cients are available
in Table 1, subsections vi., vii., viii. and ix..

Event E�ect Transition rate
Exposed Adults 2 be-
coming infectious

A2e(i,j) → A2e(i,j) − 1
A2i(i,j) → A2i(i,j) + 1

(1/(EIP − (1/ovr(i,j))))A2e(i,j)

Exposed �yers becom-
ing infectious

Fe(i,j) → Fe(i,j) − 1
Fi(i,j) → Fi(i,j) + 1

(1/(EIP − (1/ovr(i,j))))Fe(i,j)

II Gonotrophic cycle
of infectious Adults 2
without human conta-
gion

A2i(i,j) → A2i(i,j) − 1
Fi(i,j) → Fi(i,j) + 1
Hs(i,j) → Hs(i,j) − 1
He(i,j) → He(i,j) + 1

cycle2 × A2i(i,j) ×
(Hs(i,j)/Nh(i,j))× avh

II Gonotrophic cycle
of infectious Adults 2
without human conta-
gion

A2i(i,j) → A2i(i,j) − 1
Fi(i,j) → Fi(i,j) + 1

cycle2 × A2i(i,j) × ((((Nh(i,j) −
Hs(i,j))/Nh(i,j)) + (1 − avh) ×
(Hs(i,j)/Nh(i,j)))

Table 7: Event type, e�ects on the subpopulations and transition rates for the developmental model.
The coe�cients are cycle2: gonotrophic cycle coe�cient (number of daily cycles) for adult females in
stages A2; ovr(i,j): oviposition rate by �yers in the (i, j) patch; avh: transmission probability from
vector to host; EIP : extrinsic incubation period. The values of the coe�cients are available in Table 1,
subsections vi., vii., viii. and ix.

tion was �uctuating but balanced, meaning that
the birth coe�cient was considered equal to the
mortality coe�cient mh.

vi. Developmental Rate coe�cients

The developmental rates that correspond to egg
hatching, pupation, adult emergence and the
gonotrophic cycles were evaluated using the results
of the thermodynamic model developed by Sharp
and DeMichele [47] and simpli�ed by Schoo�eld et
al. [48]. According to this model, the maturation
process is controlled by one enzyme which is ac-
tive in a given temperature range and is deacti-

vated only at high temperatures. The development
is stochastic in nature and is controlled by a Poisson
process with rate RD(T ). In general terms, RD(T )
takes the form

RD(T ) = RD(298 K) (4)

× (T/298 K) exp((∆HA/R)(1/298 K− 1/T ))

1 + exp(∆HH/R)(1/T1/2 − 1/T ))

where T is the absolute temperature, ∆HA and
∆HH are thermodynamics enthalpies characteris-
tic of the organism, R is the universal gas constant,
and T1/2 is the temperature when half of the en-
zyme is deactivated because of high temperature.
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Event E�ect Transition rate
Susceptible �yer Death Fs(i,j) → Fs(i,j) − 1 ma× Fs(i,j)
Exposed �yer Death Fe(i,j) → Fe(i,j) − 1 ma× Fe(i,j)
Infectious �yer Death Fi(i,j) → Fi(i,j) − 1 ma× Fi(i,j)

Susceptible Adult 2 Death A2s(i,j) → A2s(i,j) − 1 ma×A2s(i,j)
Exposed Adult 2 Death A2e(i,j) → A2e(i,j) − 1 ma×A2e(i,j)
Infectious Adult 2 Death A2i(i,j) → A2i(i,j) − 1 ma×A2i(i,j)

Table 8: Event type, e�ects on the subpopulations and transition rates for the developmental model.
The coe�cients are ma: adult mortality. The values of the coe�cients are available in subsection vii.

Event E�ect Transition rate
Born of susceptible humans Hs(i,j) → Hs(i,j) + 1 mh×Nh(i,j)

Death of susceptible humans Hs(i,j) → Hs(i,j) − 1 mh×Hs(i,j)

Death of exposed humans He(i,j) → He(i,j) − 1 mh×He(i,j)

Transition from exposed to vi-
raemic

He(i,j) → He(i,j) − 1 Hi(i,j) →
Hi(i,j) + 1

(1/IIP )×He(i,j)

Death of Infectious humans Hi(i,j) → Hi(i,j) − 1 mh×Hi(i,j)

Transition from infectious humans
to humans in remission state

Hi(i,j) → Hi(i,j) − 1 Hr(i,j) →
Hr(i,j) + 1

(1/V P )×Hi(i,j)

Death of humans in remission state Hr(i,j) → Hr(i,j) − 1 mh×Hr(i,j)
Transition from humans in remis-
sion to toxic humans

Hr(i,j) → Hr(i,j) − 1 Ht(i,j) →
Ht(i,j) + 1

((1− rar)/rP )×Hr(i,j)

Recovery of humans in remission Hr(i,j) → Hr(i,j) − 1 HR(i,j) →
HR(i,j) + 1

(rar/rP )×Hr(i,j)

Death of removed humans HR(i,j) → HR(i,j) − 1 mh×HR(i,j)

Death of toxic humans Ht(i,j) → Ht(i,j) − 1 Hd(i,j) →
Hd(i,j) + 1

(mt/tP )×Ht(i,j)

Recovery of toxic humans Ht(i,j) → Ht(i,j) − 1 HR(i,j) →
HR(i,j) + 1

((1−mt)/tP )×Ht(i,j)

Table 9: Event type, e�ects on the subpopulations and transition rates for the developmental model.
The coe�cients are mh: human mortality coe�cient; V P : human viremic period; mh: human mortality
coe�cient; IIP : intrinsic incubation period; rP : remission period; tP : toxic period; rar: recovery after
remission probability; mt: mortality probability for toxic patients. The values of the coe�cients are
available in Table 1.

Table 10 presents the values of the di�erent coef-
�cients involved in the events: egg hatching, pupa-
tion, adult emergence and gonotrophic cycles. The
values are taken from Ref. [30] and are discussed
in Ref. [8].

vii. Mortality coe�cients

Egg mortality. The mortality coe�cient of eggs is
me = 0.01 1/day, independent of temperature in
the range 278 K ≤ T ≤ 303 K [49].

Larval mortality. The value of α0 (associated to
the carrying capacity of a single breeding site) is
α0 = 1.5, and was assigned by �tting the model
to observed values of immatures in the cemeteries
of Buenos Aires [8]. The temperature dependent
larval death coe�cient is approximated by ml =
0.01+0.9725 exp(−(T−278)/2.7035) and it is valid
in the range 278 K ≤ T ≤ 303 K [50�52].

Pupal mortality. The intrinsic mortality of a
pupa has been considered as mp = 0.01 +
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Develop. Cycle (4) RD(T ) RD(298 K) ∆HA ∆HH T1/2
Egg hatching elr 0.24 10798 100000 14184
Larval develop. lpr 0.2088 26018 55990 304.6
Pupal Develop. par 0.384 14931 -472379 148

Gonotrophic c. (A1) cycle1 0.216 15725 1756481 447.2
Gonotrophic c. (A2) cycle2 0.372 15725 1756481 447.2

Table 10: Coe�cients for the enzymatic model of maturation [Eq. (4)]. RD is measured in day−1,
enthalpies are measured in (cal / mol) and the temperature T is measured in absolute (Kelvin) degrees.

0.9725exp(−(T −278)/2.7035) [50�52]. Besides the
daily mortality in the pupal stage, there is an ad-
ditional mortality contribution associated to the
emergence of the adults. We considered a mortality
of 17% of the pupae at this event, which is added to
the mortality rate of pupae. Hence, the emergence
factor is ef = 0.83 [53].

Adult mortality. Adult mortality coe�cient is
ma = 0.091/day and it is considered independent
of temperature in the range 278 K ≤ T ≤ 303 K
[2,50,54].

viii. Fecundity and oviposition coe�cient

Females lay a number of eggs that is roughly
proportional to their body weight (46.5 eggs/mg)
[55, 56]. Considering that the mean weight of a
three-day-old female is 1.35 mg [2], we estimated
the average number of eggs laid in one oviposition
as egn = 63.
The oviposition coe�cient ovr(i,j) depends on

breeding site density BS(i,j) and it is de�ned as:

ovr(i,j) =

{
θ/tdep if BS(i,j) ≤ 150
1/tdep if BS(i,j) > 150

(5)

where θ was chosen as θ = BS(i,j)/150, a linear
function of the density of breeding sites [9].

ix. Dispersal coe�cient

We chose a di�usion-like coe�cient of diff = 830
m2/day which corresponds to a short dispersal, ap-
proximately a mean dispersal of 30 m in one day,
in agreement with short dispersal experiments and
�eld studies analyzed in detail in our previous ar-
ticle [9].

x. Mathematical description of the
stochastic model

The evolution of the subpopulations is modeled by
a state dependent Poisson process [41,57] where the
probability of the state:

(E,L, P,A1, A2s,A2e,A2i, Fs, Fe, F i,

Hs,He,Hi,Hr,Ht,HR,Hd)(i,j)

evolves in time following a Kolmogorov forward
equation that can be constructed directly from the
information collected in Tables 4 to 9 and in Eq. 3.

xi. Deterministic rates approximation for
the density-dependent Markov process

Let X be an integer vector having as entries
the populations under consideration, and eα, α =
1 . . . κ the events at which the populations change
by a �xed amount ∆α in a Poisson process with
density-dependent rates. Then, a theorem by
Kurtz [57] allows us to rewrite the stochastic pro-
cess as:

X(t) = X(0) +

κ∑
α=1

∆αY (

∫ t

0

ωα(X(s))ds) (6)

where ωα(X(s) is the transition rate associated
with the event α and Y (x) is a random Poisson
process of rate x.
The deterministic rates approximation to the

stochastic process represented by Eq. (6) consists
of the introduction of a deterministic approxima-
tion for the arguments of the Poisson variables Y (x)
in Eq. (6) [34,58]. The reasons for such a proposal
is that the transition rates change at a slower rate
than the populations. The number of each kind of
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event is then approximated as independent Poisson
processes with deterministic arguments satisfying a
di�erential equation.
The probability of nα events of type α having oc-

curred after a time dt is approximated by a Poisson
distribution with parameter λα. Hence, the proba-
bility of the population taking the value

X = X0 +

κ∑
α=1

∆αnα (7)

at a time interval dt after being in the state X0 is
approximated by a product of independent Poisson
distributions of the form

Probability(n1 . . . nκ, dt/X0) =

κ∏
α=1

Pα(λα) (8)

and

Pαn1...nE (λα) = exp(−λα)
λnαα
nα!

(9)

whenever X = X0 +
∑κ
α=1 ∆αnα has no negative

entries and

Pαn1...nE (λα) = exp(−λα)

∞∑
i=nα

λiα
i!

= 1− exp(−λα)

nα−1∑
i=0

λiα
i!

(10)

if {ni} makes a component in X zero (see Ref. [34])
Finally,

dλα/dt =< ωα(X) > (11)

where the averages are taken self-consistently with
the proposed distribution (λα(0) = 0).
The use of the Poisson approximation represents

a substantial saving of computer time compared
to direct (Monte Carlo) implementations of the
stochastic process.
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