EVALUATION OF FRACTURE TORQUE RESISTANCE OF ORTHODONTIC MINI-IMPLANTS

Fernando Dalla Rosa¹, Paola F. P. Burmann², Henrique C. Ruschel³, Ivana A. Vargas⁴, Paulo F Kramer⁵

¹ Private practice, Caxias do Sul, RS, Brazil.
² Private practice, Santo Ângelo, RS, Brazil.
³ Department of Oral Histology and Department of Pediatric Dentistry, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil.
⁴ Department of Orthodontics, ULBRA, Canoas, RS, Brazil.
⁵ Department of Pediatric Dentistry, ULBRA, Canoas, RS, Brazil.

ABSTRACT
This study sought to assess the fracture torque resistance of mini-implants used for orthodontic anchorage. Five commercially available brands of mini-implants were used (SIN®, CONEXÃO®, NEODENT®, MORELLI®, and FORESTADENT®). Ten mini-implants of each diameter of each brand were tested, for a total 100 specimens. The mini-implants were subject to a static torsion test as described in ASTM standard F543. Analysis of variance (ANOVA) with the Tukey multiple comparisons procedure was used to assess results. Overall, mean fracture strength ranged from 15.7 to 70.4 N·cm. Mini-implants with larger diameter exhibited higher peak torque values at fracture and higher yield strength, regardless of brand. In addition, significant differences across brands were observed when implants were stratified by diameter. In conclusion, larger mini-implant diameter is associated with increased fracture torque resistance. Additional information on peak torque values at fracture of different commercial brands of mini-implants may increase the success rate of this orthodontic anchorage modality.

Key words: Dental implants, orthodontics, torque.

RESISTÊNCIA DE FRATURA AO TORQUE DE MINI-IMPLANTES ORTODÔNTICOS

RESUMO
O objetivo do presente estudo foi avaliar a resistência de fratura ao torque de mini-implantes ortodônticos. Foram utilizadas cinco marcas comerciais (SIN®, CONEXÃO®, NEODENT®, MORELLI® e FORESTADENT®). Para cada diâmetro, de cada marca comercial, foram testados 10 mini-implantes, totalizando 100 amostras. Os mini-implantes foram submetidos a um ensaio estático de torção, conforme a norma técnica ASTM F543. Os resultados foram submetidos à análise de variância (ANOVA) complementada pelo teste de comparações múltiplas de Tukey. Os valores médios de resistência de fratura ao torque variaram de 15,7 a 70,4 N·cm e mini-implantes de maior diâmetro apresentaram maiores valores de torque máximo de fratura e de limite de escoamento, independente da marca comercial. Além disso, foram observadas diferenças significativas entre as marcas comerciais quando agrupadas de acordo com o diâmetro. Conclui-se que mini-implantes de maior diâmetro apresentaram maiores valores de resistência de fratura ao torque. Informações sobre o torque máximo de fratura das diferentes marcas comerciais podem aumentar o índice de sucesso deste método de ancoragem ortodôntica.

Palavras-chave: Implantes dentários; ortodontia; torque.

INTRODUCTION
The control of loads placed on teeth and their bony foundations is one of the principles of orthodontics¹. For every action force there is a reaction force of equal size and opposite direction, which causes movement of the anchorage unit². Therefore, management of orthodontic anchorage, which may be defined as the resistance offered by a group of teeth or extraoral supports when a force is applied, thus preventing or limiting unwanted movement, is essential to the success of orthodontic treatment³,⁴. In recent years, alternative orthodontic anchorage methods have become the focus of substantial research and mini-implants have been introduced into the market, broadening the range of options available⁵,⁶.
The success of mini-implants is related to their minimally invasive nature, ease of insertion and removal, low cost, immediate loading, versatility, and little discomfort to the patient. Overall, their success rate is over 80%. However, failure in the placement of these devices has been reported. Research into factors that interfere with the stability of these devices and their resistance to fracture at insertion and removal has therefore been encouraged.

Fracture torques of 5 N·cm to 50 N·cm during implant placement have been reported in the literature, although few manufacturers report such reference values. Studies have also suggested that factors associated with mini-implant design, thread profile, and material may also influence outcomes. In addition, mini-implants with larger diameter have been found to have superior fracture strength.

In view of the foregoing, the present study sought to assess the fracture torque resistance of orthodontic mini-implants from different manufacturers.

MATERIALS AND METHODS

This was a laboratory-based in vitro study and may be described as a static torsion test of bone screws. The study was conducted at Laboratório de Ensaios Mecânicos – Soluções em Ensaios de Materiais e Produtos (LEM-SCITEC, Palhoça, SC, Brazil), a facility accredited by the Brazilian National Institute of Metrology, Quality and Technology – Inmetro (CRL 0495).

Five brands of orthodontic mini-implants commercially available on the Brazilian market, with fully threaded, cylindrical, solid shafts, were used. The material from which mini-implants are made is defined by ASTM standard specification F136 (Ti 6Al-4V). It is a titanium alloy containing 6% aluminum and 4% vanadium used for manufacturing medical and dental implants. Ten mini-implants of each diameter of each brand were tested, for a total 100 specimens. Diameters ranged from 1.3 to 2 mm. All implants had a transmucosal profile of 1 mm (Table 1). All specimens had fully threaded cylindrical shafts 8 to 9 mm in length. The following characteristics were assessed in each specimen: mode and site of failure, angle of rupture, resistance to fracture at insertion, and yield torque.

Static torsion testing was performed as described in ASTM standard F543 - Standard Specification and Test Methods for Metallic Medical Bone Screws. Each screw was secured in locking pliers to prevent rotation during testing, keeping five threads exposed above the transmucosal profile. Tests were conducted at a constant speed of 1 rpm, under dry conditions, at a temperature of 20 ± 5º C. A torque (N·m)-angle (°) curve was plotted for each tested specimen, and the test was terminated at the time of screw failure. The equipment used in torsion testing is described in Table 2.

Ten specimens were used as a comparator group for the present study. Taking into consideration a mean fracture torque value of 39.2 N·cm (SD=4), reported in a previous study conducted with 1.7-mm mini-implants, the present study has 90% statistical power and a 95% confidence level to detect a 15% difference between groups. The collected data were assessed by analysis of variance (ANOVA) with the Tukey multiple comparisons procedure.

Table 1: Identification of mini-implants evaluated in the study.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Diameter/length (mm)</th>
<th>Reference</th>
<th>Lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neodent® (Curitiba, PR, Brazil)</td>
<td>1.3 x 9</td>
<td>109.488</td>
<td>800076729</td>
</tr>
<tr>
<td></td>
<td>1.6 x 9</td>
<td>109.497</td>
<td>800073022</td>
</tr>
<tr>
<td>SIN® (São Paulo, SP, Brazil)</td>
<td>1.4 x 8</td>
<td>POT 1418</td>
<td>M040069960</td>
</tr>
<tr>
<td></td>
<td>1.6 x 8</td>
<td>POT 1618</td>
<td>M070077671</td>
</tr>
<tr>
<td></td>
<td>1.8 x 8</td>
<td>POT 1818</td>
<td>M010063831</td>
</tr>
<tr>
<td>Conexão® (Arujá, SP, Brazil)</td>
<td>1.5 x 8</td>
<td>98758199</td>
<td>140379</td>
</tr>
<tr>
<td></td>
<td>1.8 x 8</td>
<td>98788199</td>
<td>135556</td>
</tr>
<tr>
<td></td>
<td>2.0 x 8</td>
<td>98708199</td>
<td>131059</td>
</tr>
<tr>
<td>Morelli® (Sorocaba, SP, Brazil)</td>
<td>1.5 x 8</td>
<td>37.10.202</td>
<td>1732607</td>
</tr>
<tr>
<td>ForestaDent® (Pforzheim, Germany)</td>
<td>1.7 x 8</td>
<td>1101A2308</td>
<td>11301454</td>
</tr>
</tbody>
</table>

RESULTS
Rupture was the characteristic mode of failure for the tested mini-implants. Fractures occurred along the free end formed by the five exposed screw threads, with the fracture angle ranging from 89° to 406.8°. On ANOVA with Tukey multiple comparisons, neither failure site nor rupture angle were significantly associated with mini-implant brand or diameter at the 5% significance level.

Table 3 shows the fracture torque resistance and yield torque values of the tested mini-implants. Mean fracture strength at insertion and yield limit ranged from 15.7 to 70.4 N·cm and 9.2 to 53.1 N·cm, respectively. Minimum and peak torque curves obtained during mechanical testing are shown in Figs. 1 and 2.

Significant differences were observed between brands. In addition, mini-implants with larger diameter exhibited superior fracture strength and yield limits, regardless of brand. The worst performance was observed for the specimen with the narrowest diameter (NEODENT® 1.3) and the best performance for the specimen with the largest diameter (CONEXÃO® 2.0).

Table 4 shows the results for mini-implants stratified into three groups by diameter: small (1.3 mm/1.4 mm/1.5 mm), medium (1.6 mm/1.7 mm) or large (1.8 mm/1.9 mm/2.0 mm). Mean fracture strength for small, medium, and large specimens was 25.9 N·cm, 33.9 N·cm, and 54.2 N·cm, respectively. In the small-diameter group, MORELLI® brand mini-implants had the best performance. In the medium-diameter group, the SIN® and NEODENT® brands stood out, whereas in the large-diameter group, CONEXÃO® brand mini-implants exhibited superior resistance to fracture at insertion.

Table 2: Identification of mini-implants evaluated in the study.

<table>
<thead>
<tr>
<th>Internal reference</th>
<th>Description</th>
<th>Manufacturer/model</th>
<th>Certificate of calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM 0143</td>
<td>Single-axis torsion testing machine – Servo Mecânica 9</td>
<td>OF</td>
<td>OFCME 30 Nm</td>
</tr>
<tr>
<td>IM 0144</td>
<td>Motion control motor</td>
<td>OF</td>
<td>INMETRO DIMCI 0789/2014</td>
</tr>
<tr>
<td>IM 0145</td>
<td>Torque measurement system – 2Nm-Maq 9</td>
<td>OF</td>
<td>OFTGN 2013</td>
</tr>
<tr>
<td>IM 0036</td>
<td>Digital caliper, 300 mm</td>
<td>INSIZE CERTI</td>
<td>IS11137-300</td>
</tr>
</tbody>
</table>

Table 3: Mean (standard deviation) fracture torque resistance and yield torque of orthodontic mini-implants.

<table>
<thead>
<tr>
<th>Brand – diameter (mm)</th>
<th>Fracture torque resistance (N·cm)</th>
<th>Yield torque (N·cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIN® – 1.4</td>
<td>26.1± (0.6)</td>
<td>17.3± (0.6)</td>
</tr>
<tr>
<td>SIN® – 1.6</td>
<td>36.1± (2.7)</td>
<td>24.5± (1.9)</td>
</tr>
<tr>
<td>SIN® – 1.8</td>
<td>50.2± (1.5)</td>
<td>33.6± (1.0)</td>
</tr>
<tr>
<td>FORESTADENT® – 1.7</td>
<td>28.1± (0.5)</td>
<td>20.1± (0.8)</td>
</tr>
<tr>
<td>MORELLI® – 1.5</td>
<td>37.7± (2.9)</td>
<td>25.2± (2.8)</td>
</tr>
<tr>
<td>CONEXÃO® – 1.5</td>
<td>24.2± (1.2)</td>
<td>16.3± (1.6)</td>
</tr>
<tr>
<td>CONEXÃO® – 1.8</td>
<td>45.9± (0.8)</td>
<td>32.7± (1.5)</td>
</tr>
<tr>
<td>CONEXÃO® – 2.0</td>
<td>70.4± (3.1)</td>
<td>53.1± (3.7)</td>
</tr>
<tr>
<td>NEODENT® – 1.3</td>
<td>15.7± (0.7)</td>
<td>9.2± (0.4)</td>
</tr>
<tr>
<td>NEODENT® – 1.6</td>
<td>37.5± (0.8)</td>
<td>23.1± (0.9)</td>
</tr>
</tbody>
</table>

Means followed by different capital letters indicate significant differences according to ANOVA followed by the Tukey multiple comparisons test, at a significance level of 5%.
FORESTADENT® brand mini-implants, despite having a larger diameter than MORELLI® brand specimens, were less resistant to fracture at insertion. Fig. 3 illustrates the relationship between fracture torque resistance and yield torque values and the different diameters of the tested mini-implants. Both variables increased with increasing implant diameter, in similar distribution patterns. The results show that the yield torque is immediately below the fracture limit.

DISCUSSION
Conventional orthodontic anchorage systems have biomechanical limitations and are dependent on patient compliance. The ease of insertion and removal and the high success rate of mini-implants have encouraged their adoption as an efficient method for skeletal anchorage. However, differences in torsional strength and peak fracture torque between different commercial brands have prompted additional research, with a view to enhancing clinical safety and reducing failure rates.
The usual length of orthodontic mini-implants ranges from 5 to 12 mm, while diameter and transmucosal profile usually range from 1.2 to 2 mm and from 0 to 3 mm, respectively. Studies have shown that a progressive increase in implant diameter provides improved primary stability due to increased bone contact area, but also increases the risk of damage to surrounding structures, particularly to the roots of adjacent teeth.

Mini-implants with smaller diameter and length, however, have increased risk of fracture due to lower mechanical resistance. Despite its importance to peri-implant health, the transmucosal profile has no influence on resistance to fracture at implant insertion. In the present study, static torsion testing was performed in accordance with ASTM standard F543. This method ensures replicability of the study and prioritizes mechanical analysis of the specimen, regardless of substrate. Mechanical data are obtained from the specimen alone, without external interference, as the implant is isolated and secured in a clamp. Conversely, studies performed in acrylic, porcine bone, and artificial bone are subject to interference from other variables.

In addition, a previous study evaluated titanium alloy quality and microstructure of the mini-implant brands tested herein. According to the authors, these devices were free from internal structural defects and compliant with current standards. In the present study, the characteristic mode of failure was mini-implant rupture. Site of failure along the exposed threads and angle of rupture were not associated with brand or diameter of the devices evaluated. Technically, fracture sites may occur randomly, as all screw threads are subject to the same strain condition and intensity. The rupture angle should preferably be high, as this would allow the practitioner to detect during insertion that the implant is undergoing elastic deformation and not driving into bone, halt the procedure, and alter the technique accordingly before fracture occurs.

Mean fracture torque resistance ranged from 15.7 to 70.5 N·cm. These values are consistent with those reported in studies that employed similar methods. Lima et al. observed values ranging from 30 to 36 N·cm in 1.6-mm NEODENT® implants, whereas Wilmes et al. in a study of 41 commercially available brands 1.3 to 2 mm in diameter, reported values ranging from 10.9 to 64.1 N·cm. Our results also showed that fracture strength is directly related to mini-implant diameter. Mini-implants with larger diameter exhibited higher fracture torque resistance, regardless of manufacturer. In the present study, the CONEXÃO® 2.0-mm mini-implants performed best overall. According to Barros et al., a 0.1-mm increase in mini-implant diameter significantly reduces the risk of fracture. Toyoshima and Wakabayashi also observed that increasing diameter improves fracture torque resistance.

Yield torque represents the time point at which alloy deformation shifts from elastic (reversible) to plastic (irreversible). Optimally, in clinical practice, dentists should always work within the elastic limit of the alloy, thus preventing permanent deformation of the device. The higher the yield limit of a device, the greater its ability to resist plastic deformation. According to the results obtained, the yield limit behaves similarly to and is immediately below the fracture limit of these devices. Therefore, manufacturers should adopt this limit as a reference value, as it represents the point at which fatigue and deformation occur; devices torqued beyond this limit may be at increased risk of fracture during removal. Further research into this mechanical parameter is warranted before this paradigm can be adopted and thus increase operator safety.

Stratification of the mini-implants into groups by diameter revealed differences across the tested brands. MORELLI® and CONEXÃO® brand devices exhibited the best fracture torque resistance in the small-diameter and large-diameter groups, respectively.

The use of mini-implants for orthodontic anchorage is effective and widespread in clinical practice. However, the success of this method depends largely on primary stability. Fracture torque thus plays a critical role in clinical protocols involving placement of these devices. Precise information on the peak fracture torque and yield limit of mini-implants should be made available by manufacturers. In addition, torque-sensing instruments should always be coupled to mini-implant drivers in order to ensure measurement of the forces applied.
Fracture Torque of Mini-implants

CORRESPONDENCE
Dr.Fernando Dalla Rosa
Rua Sinimbú, 1878, sala 1106, bairro Centro
95020002 - Caxias do Sul, RS Brazil
ferdallarosa@yahoo.com.br

REFERENCES
4. Lim SA, Cha JY, Hwang CJ. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod 2008; 78:234-240.