Anticoagulant and factor Xa-like activities of Tityus discrepans scorpion venom

Brazón, Josmary1*; Guerrero, Belsy2; D’Suze1, Gina; Sevcik, Carlos1; Arocha-Piñango, Carmen L2

*jbrazon@ivic.gob.ve, jbrazon@gmail.com

Recibido: 28 de noviembre de 2012
Aceptado: 23 de abril de 2013

Abstract. *Tityus discrepans* venom (TdV) produces a variety of haemostatic manifestations including alveoli fibrin deposition and/or prothrombin and partial thromboplastin time (PT, PTT) alterations in mammals. *In vitro* studies have demonstrated that TdV contains tissue plasminogen activator-like (t-PA), fibrinolytic and plasmin inhibitory compounds and produces platelets activation through GPVI and a novel Src-dependent signalling pathway. The aim of this study is to describe the initial characterization of procoagulant and anticoagulant components from TdV. This venom was fractionated by exclusion molecular chromatography on a Sephadex G-50 column. The eluted material was collected as five fractions called S1 to S5. These fractions and the whole venom were used to evaluate factor Xa- and thrombin-like activities, fibrinogen degradation, furthermore thrombin- and factor Xa-inhibitory activities. The results demonstrated that TdV contain components with factor Xa-like activity (procoagulants) as well fibrinogenolytic compounds present in the fraction S1 and components with factor Xa inhibitory activity in the fractions S4 and S5 (anticoagulants).

Keywords: Scorpion; Coagulation; Fibrinogen; Factor Xa.

INTRODUCTION

Many animal venoms act on the human haemostatic system as procoagulants or anticoagulants. The procoagulant components cause activation of the coagulation system and can induce a massive consumption of coagulant factors (Markland 1998a; 1998b; Arocha-Piñango et al. 1999a; 1999b; Reis et al. 2001; Flores et al. 2006); also some components promote pro-coagulant response of platelets by GPVI receptor activation such as *Tityus discrepans* venom (TdV) (Brazón et al. 2011). However, anticoagulant components may inhibit coagulant enzymes such as factor Xa or thrombin (Markward 1994; Baskova and Zavalova 2001; Basanova et al. 2002; Motoyashiki et al. 2003). Venoms may also cause an anticoagulant effect due to fibrinogen or fibrin degradation related with serine- or metalloproteases (Markland 1998a; 1998b; Pinto et al. 2004; Serrano and Maroun 2005; Swenson and Markland 2005).
Tityus discrepans venom contains anticoagulant and procoagulant components which produce alterations of the partial thromboplastin time (PTT) and prothrombin time (PT) (Brazón et al. 2008). Furthermore, discreplasmin, an antifibrinolytic compound has been isolated from TdV (Brazón et al. 2009). The purpose of this study is to describe the initial characterization of procoagulant and anticoagulant components from TdV. In this paper, we evidenced the presence of procoagulant components showing factor Xa-like activity, while the anticoagulant components inhibited the factor Xa activity and degraded the fibrinogen molecule.

MATERIALS AND METHODS
Animals, venom and purification
Tityus discrepans scorpions were collected in the areas surrounding Caracas, Venezuela. Adult scorpions (~100) were kept alive in a laboratory with food and water ad libitum. Venom was extracted from them once a month. The animals were immobilized with CO2 and the venom extraction was by electrical stimulation with pulse 50 V at 60 Hz for 100 milliseconds. The venom was dissolved in double distilled water and centrifuged at 15,000 g for 15 min at 4 °C to remove the insoluble materials. The supernatant was lyophilized and stored at – 80 °C until used. The protein concentration was estimated by spectrophotometry assuming that 1 unit of absorbance/cm of path length at 280 nm corresponds to 1 mg protein/ml (D’Suze et al. 1996). This venom was fractionated by exclusion molecular chromatography on a Sephadex G-50 column (1x200 cm) equilibrated and eluted with 20 mM ammonium acetate, pH 4.7, with a flow rate of 0.25 ml/min. Proteins were detected at 280 nm.

Anticoagulant activity
The fibrinogenolytic activity described by Salazar et al. (2007) was used to determine the anticoagulant activity of crude venom and fractions. The human fibrinogen solution (in 0.05 M imidazole-0.15 M NaCl, pH 7.4 buffer) was incubated with TdV for 24 h at 37 °C, at 0.1/30; 0.25/30; 0.5/30; 1/30 and 5/30 µg venom/µg fibrinogen ratios. Fibrinogen degradation (molecule or chains) was visualized by SDS-PAGE under non-reducing or reducing conditions, respectively, using Tris-Tricine-system on 5 and 7.5% gel (with 49.5% acrylamide/3% bis-acrylamide) (Schagger and Jagow 1987). Residual coagulant activity of fibrinogen pre-treated with TdV or fraction S1, was determined by the thrombin time method (TT) (Austen and Rhymes 1975). Briefly, a mixture of 0.1 ml of 0.05 M Tris-HCl buffer, pH 7.4 (coagulation buffer) plus 0.1 ml of 0.3 % human fibrinogen (in coagulation buffer) treated or not with venom or fraction S1 for 24 h at 37°C and at a 1/30 ratio, was incubated in a borosilicate tube (10x75 mm). Then, 0.1 ml of thrombin solution (in coagulation buffer-2.5 IU/ml) was added, thoroughly mixed at 37°C and clotting time recorded in seconds. Tests were performed three times and the median clotting time calculated. The results were expressed in seconds.

Procoagulant activity
Tityus discrepans venom coagulant activity was evaluated using S-2222 and S-2238 chromogenic substrates, which determined the factor Xa or thrombin-like activities. A mixture of 80 µl of 50 mM Tris-HCl buffer, pH 8.4, 10 µl of sample venom (1-10 µg/µl) and 10 µl of substrate (0.8 mM and 0.6 mM, final concentration), respectively. The activity was expressed as UA/min/µg. The enzymes incubated with buffer were used as positive controls.
Statistical analysis
Data were processed using nonparametric statistical procedures. Data were expressed as medians and their 90% confidence intervals (CI) with n=3, calculated by Hollander and Wolfe 1973.

RESULTS
Tityus discrepans venom was fractionated on Sephadex G-50 column and the eluted material was collected as five fractions called S1 to S5 (Figure 1A).

The proteases present in TdV induced a slight increase of fibrinogen electrophoretic mobility when a TdV/fibrinogen ratio ≥ 0.5/30 was used; this effect was greater at a ratios ≥ 1/30. At the same conditions was also evidenced a fibrinogen Aα-chains degradation; whereas Bβ and γ chains were unaffected (not shown). The ratio 1/30 was used to evaluate the effect of TdV on fibrinogen molecule/chains at different incubation times. An increase in electrophoretic mobility of fibrinogen at times ≥ 16 h was observed. Fibrinogen Aα chains degradation started after 2 h of incubation with TdV and the effect was completed 24 h later. The Bβ and γ chains degradation did not was observed in these conditions (not shown). Fibrinogen incubation for 24 h at 37 °C with TdV or with Sephadex G-50 fraction S1 (ratio 1/30), under non reducing conditions produced an increase in fibrinogen electrophoretic mobility (Figure 1B, lanes 2 and 3). Under reducing conditions, TdV only degraded fibrinogen Aα-chains, however fraction S1 degraded both Aα and Bβ chains, generating degradation fragments with molecular weights < 31 kDa (Figure 1C, lanes 2 and 3). S2 to S5 fractions had no effect on fibrinogen molecule or chains (Figure 1B and 1C).

The fibrinogen coagulant activity residual after treating with either TdV or fraction S1 (at a 1/30 ratio) was evaluated using the TT. The results showed that TT is prolonged as the fibrinogen incubation time with TdV or fraction S1 increases (not shown).

In relation to factor Xa or thrombin amidolytic activity, the results showed that hundred micrograms TdV increased the factor Xa activity (0.3 nKcat/µl) from 758.70 to 864.93 (864.92-864.96) UA/min/µg and this effect was more pronounced with fraction S1 (100 µg), observing an amidolytic activity increase from 758.70 to 998.73 (998.71-998.77). In contrast, fractions S4 and S5 inhibited the factor Xa activity in 56.11 and 16.17%, respectively (Table 1). TdV did not modify the thrombin amidolytic activity of TdV and its Sephadex G-50 fractions. (A) TdV (100 mg/ml) was passed through a Sephadex G-50 column (1 x 200 cm), with 20 mM of ammonium acetate, pH 4.7, detecting at OD 280 nm with a 0.25 ml/min flow rate. Five fractions were obtained (S1-S5). (B) Fibrinogen molecule degradation (30 µg) by TdV (1 µg) by its fractions (1 µg) after 24 h incubation at 37 °C was visualized by SDS-PAGE using Tris-Tricine-system on 5% gel under non reducing conditions. 1.- Fibrinogen (Fg) control. 2.- Fg + TdV. 3.- Fg + S1. 4.- Fg + S2. Fg + S3. Fg + S4. Fg + S5. Fibrinogen consists of three polypeptide chains Aα, Bβ and γ. Standard proteins were used as a reference to determine the molecular weight. The gels were stained with R-250 Coomassie Blue.
activity (data not shown). These results suggested the existence in TdV of a factor Xa-like activity and a factor Xa inhibitory activity which are present in the fraction S1 (procoagulant activity) and S4 and S5 (anticoagulant activity). The results also evidenced a direct amidolytic activity with TdV due to 10 µg crude venom hydrolyzed S-2222 substrate with an amidolytic activity of 19.80 (19.79-19.81) UA/min/µg (Table 1). This effect was more pronounced with 100 µg crude venom and the activity was of 106.23 (106.23 - 106.24) UA/min/µg. Furthermore, the amidolytic activity was enriched four times in fraction S1 (Table 1). Fractions S2 - S5 had no hydrolyzed the S-2222 substrate (Table 1). This amidolytic activity was reduced by > 58% in presence of serine protease inhibitors such as benzamidine or SBTI (factor Xa specific inhibitor) (Table 1). In contrast, EDTA, EGTA, phenanthrolone, iodoacetic acid or aprotinin did not modify this activity (data not shown).

Table 1. Factor Xa-like and Factor Xa inhibitory activities of TdV and its Sephadex G-50 fractions.

Factor Xa-like activity was measured by an amidolytic micromethod (S-2222 substrate) in presence or absence of protease inhibitors. To evaluate the effect of TdV or its fraction on factor Xa activity was incubated for 30 min at 37°C factor Xa (0.3 nkat/µl) with TdV or Sephadex-G50 fractions. Data were expressed as median and its IC at 90% confidence, n = 3, ND = No determined. Benz: Benzamidine.

<table>
<thead>
<tr>
<th>Sample (10 µL)</th>
<th>Amidolytic activity (S-2222) UA/min/µg</th>
<th>% inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FXa (0.3 nKcat/µL)</td>
<td>758.70 (758.69-758.72)</td>
<td>0.00</td>
</tr>
<tr>
<td>FXa + TdV (10 µg)</td>
<td>545.64 (545.63-545.66)</td>
<td>28.08</td>
</tr>
<tr>
<td>FXa + TdV (50 µg)</td>
<td>670.63 (670.62-670.65)</td>
<td>11.61</td>
</tr>
<tr>
<td>FXa + TdV (100 µg)</td>
<td>864.93 (864.92-864.96)</td>
<td>0.00</td>
</tr>
<tr>
<td>FXa + S1 (100 µg)</td>
<td>998.73 (998.71-998.77)</td>
<td>0.00</td>
</tr>
<tr>
<td>FXa + S4 (100 µg)</td>
<td>333.00 (332.98-333.10)</td>
<td>56.11</td>
</tr>
<tr>
<td>FXa + S5 (100 µg)</td>
<td>636.02 (636.00-636.04)</td>
<td>16.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample (10 µL)</th>
<th>Amidolytic activity (S-2222) UA/min/µg</th>
<th>Benz</th>
<th>SBTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TdV (10 µg)</td>
<td>19.80 (19.79-19.81)</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>TdV (50 µg)</td>
<td>78.60 (78.59-78.63)</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>TdV (100 µg)</td>
<td>106.23 (106.23-106.24)</td>
<td>65.63</td>
<td>58.60</td>
</tr>
<tr>
<td>S1 (100 µg)</td>
<td>404.08 (404.08-404.10)</td>
<td>88.50</td>
<td>78.41</td>
</tr>
</tbody>
</table>

In addition, nor TdV neither the chromatographic fractions showed thrombin-like amidolytic activity.

DISCUSSION

Scorpions using their venom to defend themselves from predators or to capture their prey; their venoms are complex mixtures of biologically active components over different types of organisms, such as bacteria, insects, fungi and mammals (D’Suze et al. 2004a; 2004b; Díaz et al. 2009; Joya et al. 2011). Scorpion venoms
are generally not known to have the ability to produce hemostatic alterations. However, there are exceptions as *Centruroides sculpturatus* (Watt et al., 1974; Longenecker and Longenecker 1981), *Buthus tamulus* (Devi et al. 1970; Reddy et al. 1972), *Buthus martensi* (Song et al. 2005) and *Tityus discrepans* (D’Suze et al. 2003; 2004b; Brazón et al. 2008; 2009; 2011) that their venoms, in case of severe envenoming perturb the mammal hemostatic system. The relevance of components with action on haemostatic system (platelet, coagulation and fibrinolysis) in scorpion venoms is not clear. However, the presence of these components has pathophysiologic implications severe in the scorpion envenoming. The results of fibrinogenolytic activity indicate that TdV contains fibrinogenases that induce fibrinogen degradation associated with an anticoagulant effect. Similar components were isolated from snake venoms, such as ancrod, this compound is medically important as a therapeutic agents (Swenson and Markland 2005). On the other hand, the results of this study indicated the presence of anticoagulant components with factor Xa inhibitory activity in TdV, which are responsible of the previously described PTT and PT prolongation (Brazón et al. 2008).

Furthermore, this venom produces a factor Xa-like activity (procoagulant activity) which was found in fraction S1; this finding is consistent with the synergism in amidolytic activity observed when commercial factor Xa was incubated with either TdV or fraction S1. Probably, the components with the factor Xa-like activity present in the venom and S1 induced the previously described PTT shortening (Brazón et al. 2008). The benzamidine or SBTI effects on the venom amidolytic activity, supports the notion that a serineproteases with factor Xa-like activity exists in *T. discrepans* venom. Additionally, the TdV did not hydrolyze the S-2238 substrate. These results indicate the absence of thrombin-like activity in venom (data not shown).

We have shown that TdV, in addition to t-PA-like compounds and discresplamin, a plasmin inhibitor (Brazón et al. 2009), also contains anticoagulant compounds able to inhibit factor Xa amidolytic activity and to induce fibrinogen degradation. Our results also demonstrated the existence of a procoagulant activity which was similar to factor Xa. All these compounds, per se or in combination, could explain the alterations of PT and PTT (Brazón et al. 2008) as well as the fibrin deposits observed in lung alveoli from experimentally envenomed mammals (D’Suze et al. 2004b).

The most dangerous complication induced by TdV is the "scorpion venom respiratory distress syndrome (SVRDS)". Our group has demonstrated that this complication started by neutrophil lung infiltration and sequestration, with important fibrin deposition as the last step of a cascade reaction where leukocytes activation products are involved (D’Suze et al. 2003). However the pathophysiology of SVRDS is complex and cannot be entirely attributed to the unregulated leukocytes activation products, SVRDS may in part be associated with the procoagulant components found in TdV. These are not abundant, < 1% of the venom, but are able to produce coagulation disorders both in scorpionism patients as well as in vitro studies (Brazón et al. 2008; D’Suze et al. 2003, 2004). Perhaps venom procoagulant components act in a synergistic form with neutrophil procoagulant products enhancing fibrin clots formation. These critical questions wait for answers from ongoing studies. This investigation has motivated the further purification and physiological characterization of the compounds responsible of the haemostatic alterations reported here. These compounds are very interesting due its biotechnological applications on clinical disorders associated with the fibrinolytic system and coagulation, it is mandatory to determine their action mechanisms, physiological effects and pharmacokinetic parameters.

Acknowledgements

The authors are indebted to the people of San Antonio de Los Altos, Miranda, Venezuela and their Fire Department for the supply of scorpions. We thank to Moisés Sandoval for the technical assistance. We are grateful with Zoila Carvajal and Ana Maria Salazar for the technical assistance as for their advice and comments. This research was supported by grants from FONACIT and IVIC (Caracas, Venezuela).

REFERENCES

Arocha-Piñango C.L., Marchi R., Guerrero B. Inventory of exogenous hemostatic factors

D’Suze G., Corona F., Possani L.D., Sevcik C. HPLC purification and amino acid sequence of toxins from the muscarinic fraction of Tityus discrepans scorpion venom. Toxicon. 1996;34:591-598.

D’Suze G., Moncada S., González C., Sevcik C., Aguilar V., Alagón A. Relationship between plasmatic levels of various cytokines, tumour necrosis factor, enzymes, glucose and venom concentration following Tityus scorpion sting. Toxicon. 2003;41:367-375.

Markland F. Snake venoms and hemostatic

Schagger H., Jagow G. Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for the Separation of Proteins in the Range from 1 to 100 kDa. Analytical Biochemistry. 1987;166:368-379.

Serrano M.T., Maroun R.C. Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon. 2005;45:1115-1132.

