Albinism is a hereditary disorder that occurs due to a recessive gene (alb) in the homozygous condition, leading to an absence of melanin or alteration of development and distribution of chromatophores in the skin of animals (Brame, 1962; Browder, 2005, Jablonski et al., 2014). This anomaly is expressed phenotypically by the white coloration of the skin and by the red iris (Bechtel, 1995). Albinism has been widely reported among vertebrates worldwide (McCardle, 2012), and amphibians present different examples (Childs, 1953; Bosch, 1991; Benavides et al., 2000; Pearl et al., 2002; Wojnowski et al., 2010; Toledo et al., 2011). However, for Argentinean albinism are scarce for amphibian species (caecilds: Cacivio and Céspedez, 1998, anurans: Barg and Caneppuccia, 2003; Sanabria and Laspiur, 2010; López and Ghirardi, 2011) and generally most of them are described on adults.

Albinisms in amphibians were observed worldwide in larvae, juveniles and adults. The literature for larvae included reports of different species on different continents (Table 1) and generally described total albinism in few larvae in a species. Albino larvae are usually accompanied by morpho-physiological malformations such as delay in growth rate, low activity rate and absence of eyes and nostrils (e.g., Barg and Caneppuccia, 2003), which can affect adversely individual survival (Takatsuji and Nakamura, 1987; Vershinin, 2004). Actually, albino larvae may be further at risk from predation and have lower survivorship after metamorphosis relative to normal individuals (Childs, 1953).

As part of continuous amphibian monitoring in the Middle-East of Argentina, on 21 November 2014 we random collected with authorization of the Ministerio de Aguas, Servicios Públicos y Medio Ambiente (Santa Fe Province, Argentina) two foam nests (embryos stages 14-16, Gosner, 1960) of *Leptodactylus chaquensis* from an urban lake named “Parque General Manuel Belgrano” (PGMB) named commonly as “Parque del Sur” (PS) (31°39’55.31’S, 60°42´48.69”W). Moreover, *L. chaquensis* is distributed in northern Argentina, Chaco and western oriental region of Paraguay, northern Uruguay, lowland Bolivia, and parts of western and southern Brazil (Heyer et al., 2004). It is important to note that the urban lake is filled with groundwater but also with the drainage of swimming pools. In addition, the lake has wet-temperate climate (Temperature 18 ± 2 °C, rainfall 1000 ±100 mm) (Lajmanovich, 1996), its vegetation is mainly domain by ornamental trees and shrubs, and lacks of natural photoperiod due to light are continuous present during photopic (day, natural light) and scotopic (night, artificial light by numerous luminaries) phases (illuminations < 200 lx).

Each foam nest containing 550 embryos were raised into separated tanks at outdoor in the experimental sector of Facultad de Bioquímica y Ciencias Biológicas (FBCB) of Universidad Nacional del
C. Martinuzzi et al. — Albinism in Leptodactylus chaquensis

Table 1. Albinisms in amphibian larvae.

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Localization</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUFONIDAE</td>
<td>Melanophryniscus montevicensis</td>
<td>Cabo Polonio, Rocha, Uruguay</td>
<td>Maneyro and Achaval (2004)</td>
</tr>
<tr>
<td></td>
<td>Rhinella arenarum</td>
<td>South America</td>
<td>Barg and Canepuccia (2003)</td>
</tr>
<tr>
<td></td>
<td>Rhinella ornata</td>
<td>Sao Paulo, Brazil</td>
<td>Brassaloti and Bertoluci (2008)</td>
</tr>
<tr>
<td>HYLIDAE</td>
<td>Trachycephalus mesophaeus **</td>
<td>Brazil</td>
<td>Sazima (1974)</td>
</tr>
<tr>
<td></td>
<td>Trachycephalus hyphonius **</td>
<td>Caazapa National Park, Apepu, Paraguay</td>
<td>Motte and Cacciali (2009)</td>
</tr>
<tr>
<td></td>
<td>Leptodactylus chaquensis</td>
<td>Parque del Sur Lake, Santa Fe, Argentina</td>
<td>The present report</td>
</tr>
<tr>
<td>ODONTOPHRYNIDAE</td>
<td>Odontophrynus occidentalis</td>
<td>Quebrada de las Flores, Caucete, San Juan, Argentina</td>
<td>Sanabria and Laspiur (2010)</td>
</tr>
<tr>
<td>RANIDAE</td>
<td>Rana cascadae</td>
<td>Three Creek Lake, Oregon, United States</td>
<td>McCreary (2008)</td>
</tr>
<tr>
<td></td>
<td>Lithobates catesbeianus **</td>
<td>Massanutten, Virginia, Virginia, United States</td>
<td>Mitchell (2005)</td>
</tr>
<tr>
<td>ALYTIDAE</td>
<td>Alytes obstetricans</td>
<td>Arenas de Iguña, Cantabria, Spain</td>
<td>Rivera et al. (1991); Diego-Rasilla and Luengo (2007)</td>
</tr>
<tr>
<td></td>
<td>Alytes cisternassi</td>
<td>Sierra Morena, Andalusia, Spain</td>
<td>Barnestein et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Alytes dickhilleni</td>
<td>Sierra de Castril Natural Park, Andalucia, Spain</td>
<td>Benavides et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>Discoglossus pictus **</td>
<td>Belsito, Palermo, Sicily</td>
<td>Boulenger (1897), Escoriza (2012)</td>
</tr>
<tr>
<td>PELOBATIDAE</td>
<td>Pelobates cultripes</td>
<td>Iberian Peninsula</td>
<td>Bosch (1991); Gómez-Serrano (1994)</td>
</tr>
<tr>
<td>SCAPHIOPODIDAE</td>
<td>Scaphiopus holbrookii **</td>
<td>United States</td>
<td>Johnston (2006)</td>
</tr>
<tr>
<td>PELODYTIDAE</td>
<td>Pelodytes punctatus</td>
<td>Iberian Peninsula</td>
<td>Arribas (1986)</td>
</tr>
<tr>
<td>RHACOPHORIDAE</td>
<td>Rhacophorus arboreus</td>
<td>Japan</td>
<td>Okada and Okada (2008)</td>
</tr>
</tbody>
</table>

** Historical names: Phrynohyas mesophaea; Trachycephalus venulosus; Leptodactylus ocellatus; Rana catesbeiana; Discoglossus pictus pictus; Scaphiopus holbrookii holbrookii.

Litoral (UNL). The tanks were filled with water of the urban lake (250 L, 4.5 mg l⁻¹ dissolved oxygen, pH 7.5). Larvae were fed with boiled lettuce every 3 days. After hatching we monitored the larvae daily until metamorphosis, approximately for 2 months. Metamorphs were collected from each tank after reaching Stage 42 (Gosner, 1960) (i.e., all four limbs were present and tail regression had begun) and they were housed in moistened plastic cups into the laboratory until they completed tail resorption and the
Urostyle was clearly discernible (Gosner Stage 46). Differences in proportion of albino larvae and metamorph of each nest were examined for significance in pairs by the Binomial test and were considered significant at \( P \leq 0.05 \) (Margolin et al., 1983). The specimens were deposited on the Herpetological collection of FBCB-UNL as a pool (PL-FBCB-3018).

Each foam nest presented \( n = 90 \) and \( n = 82 \) albino larvae, respectively (Fig. 1 A, C). There were not statistical differences between proportion of albino larvae in both nest \( (Z=0.61; p>0.05) \). Proportion of the total albinos completed the metamorphosis \( (18\%; n = 17 \) and \( 29\%; n = 24 \) ) (Fig. 1 B, D) were statistical significant \( (Z=0.67; p>0.05) \). The remaining ones died after reached Stage 37. The metamorphs were completely albino froglet and survived a few days (1–10 days).

The appearance of amphibian albinisms is not clear and it is not well studied worldwide. Some authors demonstrated in larvae that this condition could be favored by environmental distress (Vershinin, 2004), mainly by light pollution due to alteration of plasma levels of photoperiodic hormones such as melatonin (essential in the secretion of melanin, Gern et al., 1983; Buchanan et al., 2008; Perry et al., 2008). Therefore, if metabolic alteration by photopollution impacts skin and eye melanophores of amphibian larvae, complete albinism occurs (Lanza et al., 2009; Spadola and Insacco, 2010). Although the last hypothesis is tested based on experiments in laboratory, and it might be linked with the albinisms in \( L. \) chaquensis larvae and characteristic of the area of collection, more studies are needed to relate anuran larvae skin coloration under constant light pressures. Moreover, field studies indicating that amphibian living in metal-contaminated areas present high percentages of albinos in adult stages (Addlassnig et al., 2013) must be also considered for future research. Finally, the presence of completely albino larva could be included in monitoring of a population (Brassaloti and Bertoluci, 2008), since frequency of albinos in vertebrates fluctuates between 1:10,000 and 1:30,000 individuals (Bechtel, 1995).

Acknowledgements
We thank Raúl Maneyro for providing bibliography and logistical support. The investigation was approved by of FBCB (UNL) animal ethics committee and it was conducted according to the Guidelines for

![Figure 1](image_url). Normally-patterned \textit{Leptodactylus chaquensis} larvae and metamorph (A, B) and albino larvae and metamorph (C, D) from the same location (Parque del Sur Lake, Santa Fe Province, Argentina). Upper Bars 4.87 mm; bottom bars 2.04 mm.
use of live amphibians and reptiles in field research compiled by ASIH, HL and SSAR guild nesses and the state law “Protection and Conservation of Wild Fauna” (Argentina National Law N° 22.421). The study was funded by CONICET, ANCyT-FONCyT and CAI+D-UNL.

**Literature cited**


© 2016 por los autores, licencia otorgada a la Asociación Herpetológica Argentina. Este artículo es de acceso abierto y distribuido bajo los términos y condiciones de una licencia Atribución-No Comercial 2.5 Argentina de Creative Commons. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc/2.5/ar/