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Abstract−− This work presents a stochastic multi-

period model for representing a petroleum refinery. 
Uncertainty is taken into account in parameters such 
as demands, product sale prices and crude oil prices. 
In the present work, uncertainty is considered as a 
set of discrete scenarios, each representing a possible 
shifting of market expectations. Every environment 
is weighted through an expected probability of oc-
currence. Previous work revealed that the computa-
tional effort of uncertain multiperiod refinery pro-
duction planning models grows exponentially with 
the number of time periods and scenarios. There-
fore, in order to reduce the computational effort 
over uncertain long-planning horizons, special tech-
niques must be employed. The proposal is to apply 
Lagrangean Decomposition, which exploits the 
block-diagonal structure of the problem, to reduce 
solution time by decomposing the model on a tempo-
ral basis. Solution of the proposed algorithm showed 
a significant reduction in computational effort with 
respect to the full-scale outer approximation solver. 

Keywords−− Lagrangean decomposition, uncer-
tainty, petroleum refinery, planning, MINLP. 
 

I. INTRODUCTION 
Commercial tools that can support the decision making 
process of production planning of refineries are cur-
rently based on linear models that rely on constant 
yields. This limitation motivated the developed of more 
accurate representations. One of the first contributions 
to consider nonlinearity in the production planning is 
that of Pinto and Moro (2000). According to their pro-
posed framework, every unit is represented as an entity 
and the complete refinery topology is defined by con-
necting unit streams. Nonlinearity arises mainly from 
blending equations and physical properties. Later, Neiro 
and Pinto (2005) extended the model by accounting for 
multiple time periods and uncertainty expressed in 
terms of discrete scenarios. 
In order to tackle the large computational effort that 
results from the size of planning problems, tailored so-
lutions strategies were developed. Ponnambalam et al. 
(1992) developed an approach that combines the sim-
plex method for linear programming with an interior 
point method for solving a multiperiod planning model 
in the oil refinery industry. Neiro and Pinto (2006) de-

veloped decomposition methods that are derived from 
the cross -decomposition theory that prevents the use of 
master problems. The proposed strategies rely on meth-
ods such as Lagrangean decomposition and La-
grangean/surrogate relaxation.  
The objective of this paper is to develop efficient solu-
tion techniques for multiperiod planning models under 
uncertainty. The refinery planning model of Neiro and 
Pinto (2005) with discrete scenarios and corresponding 
probabilities assigned to the possible market environ-
ments is used. The resulting model generates large-scale 
MINLP problems that are then solved with Lagrangean-
based decomposition methods. 

II. PROBLEM STATEMENT 
The problem to be considered concerns a real-world 
production planning of the REVAP refinery from Petro-
bras, located in São José dos Campos (SP, Brazil). A 
broader discussion on refinery models for planning op-
erations can be found in Pinto et al. (2000) and Neiro 
and Pinto (2005). Generally, it is assumed that in each 
unit intermediate inlet streams are always mixed and 
intermediate streams that leave any unit may be sent to 
several destinations. Therefore, there may be mixing 
(splitting) before (after) each of the units. The refinery 
may acquire crude oil from different suppliers that are 
able to provide petroleum types with different properties 
and purchase prices. The refinery produces several 
products that present varied demand profiles and selling 
prices along a planning horizon that is divided into t 
discrete time periods of equal duration, t ∈ T. In addi-
tion, uncertainty for petroleum purchase prices, product 
selling prices as well as product demands are repre-
sented through discrete scenarios, c ∈ C. Each scenario 
is weighted according to its occurrence probability as 
detailed in the following section. 

III. UNCERTAINTY SCENARIO 
REPRESENTATION 

The main goal of a model that considers uncertainty is 
to provide a forecast to the planner of how the refinery 
should perform under several possible scenarios that 
result from different values of the stochastic parameters. 
Moreover, it should be noted that solutions do not 
change depending on the distribution of the probabilities 
assumed for each scenario. Table 1 shows solutions of 
an illustrative example in terms of the feedstock selec-
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tion for three different problems considering a single 
time period. The first problem considers that a single 
scenario is feasible, in the second problem two scenar-
ios are possible with the following probability distribu-
tion: scenario c1 with prob1 = 40% and scenario c2, with 
prob2 = 60%. Finally, in the third problem it is consid-
ered that two scenarios are possible with the following 
probability distribution: scenario c1 with prob1 = 60% 
and scenario c2 with prob2 = 40%. Problems 2 and 3 
have the same scenario c1 as the only scenario for Prob-
lem 1, and scenarios c2 are also the same in Problems 2 
and 3. 

Table 1 shows that the solution for scenario c1 is the 
same regardless of the problem and the same behavior is 

observed for scenario c2. Solutions for the same sce-
nario do not change because the constraints are the same 
and the only difference concerns the probability pa-
rameter of the revenue and costs terms in the objective 
function. The objective function value should change 
since each scenario contributes with different probabil-
ity. So, the multiscenario model returns a weighted ob-
jective function based on the probability at which each 
scenario occurs. More importantly, however, is that the 
optimization model satisfies the constraints under all 
different scenarios, as expressed in the model of section 
3, which renders a conservative approach for handling 
uncertainty. 
 

 

Table 1 – Feedstock selection for three problems considering different scenarios 

Problem 1  Problem 2  Problem 3 
Crude 
types c1 

(prob1 = 1.0) 

 c1  

(prob1 = 0.4) 

c2 

(prob2 = 0.6) 

 c1 

(prob1 = 0.6) 

c2 

(prob2 = 0.4) 

Marlin 0  0 3758  0 3758 
RGN 571  571 2160  571 2160 
Cabiun 4417  4417 17993  4417 17993 
Albaco 20000  20000 0  20000 0 
Condoso 1458  1458 2428  1458 2428 

 

IV. MATHEMATICAL MODEL 
The following notation is used in the mathematical 
model: 

Indices: 
c scenario 
p property 
s stream 
t time period 
u, u’ unit 
v operating variable 

Sets: 
C scenarios { c | c = 1,…,NC } 
PIu properties of the inlet stream of unit u 
POu,s properties of outlet stream s of unit u 
SOu outlet streams of unit u 
T time periods { t | t = 1,…,NT } 
U units of the refinery complex 
Uf petroleum tanks 
Ufeed units that process petroleum 
UIu units whose outlet streams feed unit u 
UOu,s units that are fed by stream s of unit u 
Up product tanks 
USu ordered pair (u’,s) that feeds u 
VOu operating variables of unit u 

Parameters: 
Cbu pumping cost for unit u 

Cfu,t,c price of petroleum u at t and under c  
Cinvu,t,c inventory cost of product u at t and under c 
Cpu,t,c price of product u at t and under c 
Cru fixed operating cost of unit u 
Cvu,v variable cost for operating variable v of u 
Demu,t,c demand of u at t (u ∈ Up) under c 
PFL

u,t LB of inlet property p of unit u  
PFU

u,t UB of inlet property p of unit u  
probt,c probability of scenario c at time period t 
Propu,s,p static property p of outlet stream s from u 
QFL

u LB for feed flow rate of unit u 
QFU

u UB for feed flow rate of unit u 
Qgainu,s flow rate gain of outlet stream s of unit u 
QL

u,c LB for outlet flow rate of unit u under sce-
nario c 

QSL
u LB for outlet flow rate of unit u  

QSU
u UB for outlet flow rate of unit u 

QU
u,c UB for outlet flow rate of unit u under sce-

nario c 
VL

u,v LB for operating variable v of unit u  
Volu

Max storing capacity of  tank u 
VU

u,v UB for operating variable v of unit u 

Variables: 
PFu,p,t,c property p of the feed stream of unit u at 

time period t under scenario c 
PSu,s,p,t,c property p of the outlet stream s at unit u at 

time period t under scenario c 
QFu,t,c feed flow rate of unit u at time period t 
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under scenario c 
 

QSu,s,t,c outlet flow rate of stream s at unit u at time 
period t under scenario c 

Qu,s,u’,t,c flow rate of stream s between units u’ and u 
in time period t for scenario c 

Volu,t,c inventory level of u at time period t under 
scenario c 

Vu,v,t,c operating variable v of unit u in time period 
t under scenario c 

yu,t,c binary variable that is 1 if petroleum u (u ∈ 
Uf) is chosen at t under scenario c; 0, else. 

The problem is denoted RMP (Refinery Multiperiod 
Planning) and is defined as follows: 

( )
p

c ,t u ,t ,c u ,t ,c u ,t ,c
c t u

Max z prob Cp QF Vol
∈ ∈ ∈

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑ ∑

C T U

f u

c ,t u ,t ,c u,s,t,c
c t u s

prob Cf QS
∈ ∈ ∈ ∈

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑

C T U SO
 

{ }

u u ,t ,c
c t u f

 u u,v u ,v ,t ,c u,t,c
c t vu , uf p

Cb y

[Cr ( Cv .V )]QF

∈ ∈ ∈

∈ ∈ ∈∈

⎛ ⎞
− ∑ ∑ ∑⎜ ⎟

⎝ ⎠
⎛ ⎞

− +⎜ ⎟∑ ∑ ∑ ∑⎜ ⎟
⎝ ⎠

C T U

C T VOU \ U U

u ,t ,c u ,t ,c
t u p

Cinv Vol
∈ ∈

⎛ ⎞
−∑ ∑⎜ ⎟

⎝ ⎠T U
 (1) 

Subject to: 

Constraints on process units: 

( )
u ,t ,c u',s ,u ,t ,c

u',s u
QF Q

∈
= ∑

US
f u \ ,t ,c∀ ∈ ∈ ∈U U T C  (2) 

( )u ,s ,t ,c u ,t ,c u ,s u ,p ,t ,c u ,s ,v u ,v ,t ,c
v u

QS QF . f PF QGain .V
∈

= + ∑
VO

 

{ }p f u uu \ , ,s , p ,t ,c∀ ∈ ∈ ∈ ∈ ∈U U U SO PI T C  (3) 

u ,s ,t ,c u ,s ,u',t ,c
u' u ,s

QS Q
∈

= ∑
UO

 

p uu \ , s ,t ,c∀ ∈ ∈ ∈ ∈U U SO T C  (4) 

( )

( )

u',s ,u ,t ,c u',s ,p ,t ,c
u',s u

u ,p ,t ,c
u',s ,u ,t ,c

u',s u

Q .PS
PF

Q
∈

∈

∑
=

∑
US

US

 

f uu \ , p ,t ,c∀ ∈ ∈ ∈ ∈U U PI T C  (5) 

u ,s ,p ,t ,c u ,s ,p u ,p ,t ,c u u ,v ,t ,c uPS f ( PF | p ,V | v )= ∈ ∈PI VO  

p u u ,su \ ,s , p ,t ,c∀ ∈ ∈ ∈ ∈ ∈U U SO PO T C  (6) 
Production balance: 

, , , 1, , , , ,u t c u t c u t c u t cVol Vol QF Dem−= + −

,pu t ,c∀ ∈ ∈ ∈U T C  (7) 
Petroleum supply constraint: 

L U
u ,t ,c u u ,s ,t ,c u u,t,cy .QS QS QS .y≤ ≤  

f uu ,s ,t ,c∀ ∈ ∈ ∈ ∈U SO T C  (8) 

Operation and product quality specifications: 
L U

u u ,t ,c uQF QF QF≤ ≤  

fu \ ,t ,c∀ ∈ ∈ ∈U U T C  (9) 
L U

u ,p u ,p ,t ,c u ,pPF PF PF≤ ≤  

f uu \ , p ,t ,c∀ ∈ ∈ ∈ ∈U U PI T C  (10) 
L U

u ,v u ,v ,t ,c u ,vV V V≤ ≤  

{ }f p uu \ , ,v ,t ,c∀ ∈ ∈ ∈ ∈U U U VO T C  (11) 

{ }QF ,QS ,Q,Vol ; PF ,PS ,V ; y 0,1+∈ℜ ∈ℜ ∈  (12) 
 
The objective function (1) is defined as the maximiza-
tion of the revenue obtained by the product sales minus 
costs related to raw material and operation. The operat-
ing cost is a non-linear term that depends on the operat-
ing mode of the unit and on the flow rate of the inlet 
stream. If the unit is operated at its design condition, a 
base cost that is proportional to the feed flow rate is 
incurred. Moreover, a proportional cost is incurred, 
which depends on the value of the deviation variable.  
Equation (2) describes mass balances at inlet of unit u. 
Equation (3) denotes the relationship of the product 
flow rates with the feed flow rate (QFu,t), feed properties 
(PFu,p,t) and operating variables (Vu,v,t) at each time pe-
riod t. Equation (3) is valid for units whose product 
yields closely depend on the petroleum types, such as 
atmospheric and vacuum distillation columns. Other 
units usually operate at constant yields; this implies that 
the variable PFu,p,t is replaced by a corresponding con-
stant parameter. Therefore, Eq. (3) becomes linear for 
these cases. Equation (4) represents the mass balance at 
the outlet of unit u. Equation (5) represents a weighted 
average that relates properties of the unit feed stream 
with properties of the inlet streams. There are some 
cases for which properties must be replaced by mixing 
indices in order to apply Eq. (5) and some properties 
must be weighted on a mass basis. In the latter cases, 
the density of the corresponding stream must multiply 
every term in the numerator and denominator of Eq. (5). 
Specific examples of Eqs. (3) and (5) are shown in 
Neiro and Pinto (2004). Equation (6) shows the general 
relationship among outlet properties, feed properties and 
operating variables. The functional form of Eq. (6) de-
pends on the unit, stream and property under considera-
tion. Most of the outlet properties are considered con-
stant values, and therefore only a few are estimated. 
Those are usually properties that depend on petroleum 
types, such as sulfur content.  
Equation (7) represents the inventory level for product 
tanks at every time period. Equation (8) bounds outlet 
flow rate for petroleum tanks that are selected; note that 
there are binary variables yu,t that correspond to the 
choice of petroleum type u at time period t in order to 
avoid that insignificant amounts of crude oil are selected 
(‘tea spoons”). Equation (9) refers to unit capacities, 
whereas Eq. (10) refers to the properties for product 
tanks. Equation (11) specifies the operating variable 
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range and Eq.(12) defines domain for the optimization 
variables. It is important to note that the constraints are 
defined for each time period t and scenario c, and the 
objective function (1) maximizes profit under all these 
time periods and scenarios. 
Problem RMP is a Mixed Integer Nonlinear Program-
ming (MINLP) model whose main decisions concern 
the selection of petroleum types to be processed by the 
refinery at each time period as well as the amount se-
lected for each of them, the processing units operating 
plan and inventory management of final products along 
the planning horizon. Examples of application of the 
planning model in real-world refineries are presented in 
Neiro and Pinto (2004, 2005). 

V. DECOMPOSITION STRATEGIES 
Neiro and Pinto (2005) have solved Problem RMP up 
to 20 time periods and up to 5 scenarios. Results in Fig-
ure 1 show an exponential increase in solution time with 
the number of time periods, as well as with the number 
of scenarios. Therefore, in order to solve problems for 
larger number of time periods and scenarios in reason-
able solution time, it is necessary to develop a more 
efficient solution approach. 
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Fig. 1 – Solution time versus number of time periods and 
scenarios (Neiro and Pinto, 2005) 

 
 

Fig. 2 – Structure of model RMP 
 

Because Problem RMP presents a block structure (see 
Fig. 2), Lagrangean Decomposition is a suitable ap-
proach that can be applied in order to reduce solution 
time by decomposing and solving smaller problems 
with respect to the original problem (Guignard and Kim, 
1987). 
Neiro and Pinto (2006) and Neiro (2004) have presented 
several different approaches for solving multiperiod 
planning problems using Lagrangean Decomposition. In 
this work the idea is to apply similar ideas in which the 
planning horizon of T time periods is decomposed in T 
problems and solved independently. Figure 3 shows a 
diagram of the general decomposition steps. The algo-
rithm is initialized with a set of Lagrange multipliers; 
the dual subproblem (SDλ) is then solved and provides 
an upper bound on the full-scale problem and y for the 
primal subproblem (SPy). The solution of the primal 
subproblem provides a lower bound (maximization) for 
the full-scale problem and the Lagrangean multipliers, 
λ, that are obtained for fixed primal variables, for the 
dual subproblem. Concerning the convergence test, it 
checks for bound-improvement and it is based on the 
observation that solutions of consecutive iterations gen-
erated by each of the subproblems are always different, 
unless the optimal solution is reached. As a result, cy-
cling is prohibited and the algorithm has finite conver-
gence (Van Roy, 1983). 

 
 Initialization 

Dual subproblem 
SDλ

Primal subproblem 
SPy 

Convergence 
test
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λ 

Subgradient 
Optimization y 

zSDλ 

zSPy 

 
Fig. 3 – Modified Cross Decomposition Method 
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A set of different combinations of primal-dual subprob-
lems can be used in the decomposition approach of Fig. 
3.  In this work, two strategies were tested for the solu-
tion of the multiperiod production planning for the sin-
gle refinery model described in section IV. These basi-
cally differ in the way the primal subproblems are 
solved. Sub-sections A and B show the dual and primal 
subproblems of RMP respectively adopted in the two 
proposed strategies. 
 
A. Dual Subproblem of RMP 
Equation (7) can be rewritten as follows: 

A B
u ,t ,c u ,t 1,c u ,t ,c u ,t ,cVol Vol QF Dem−= + −   

pu ,t ,c∀ ∈ ∈ ∈U T C  (13) 

A B
u ,t ,c u ,t ,c pVol Vol , u ,t ,c= ∀ ∈ ∈ ∈U T C  (14) 

Now, dualizing constraint (14) yields the following ob-
jective function: 
 
Max 

( )
u

A
c,t u ,t ,c u ,t ,c u ,t ,c

c t p
z prob Cp QF Vol

∈ ∈ ∈

⎛ ⎞
= −∑ ∑ ∑⎜ ⎟

⎝ ⎠
RMP-LR

C T U

c ,t u ,t ,c u,s,t,c
c t u sf u

prob Cf QS
∈ ∈ ∈ ∈

⎛ ⎞
− ∑ ∑ ∑ ∑⎜ ⎟

⎝ ⎠C T U SO
 

{ }

u u ,t ,c
c t u f

 u u,v u ,v ,t ,c u,t,c
c t vu , uf p

Cb y

[Cr ( Cv .V )]QF

∈ ∈ ∈

∈ ∈ ∈∈

⎛ ⎞
− ∑ ∑ ∑⎜ ⎟

⎝ ⎠
⎛ ⎞

− +⎜ ⎟∑ ∑ ∑ ∑⎜ ⎟
⎝ ⎠

C T U

C T VOU\ U U

A
u ,t ,c u ,t ,c

t u p
Cinv Vol

∈ ∈

⎛ ⎞
−∑ ∑⎜ ⎟

⎝ ⎠T U
 

( )( )B A
u ,t ,c u ,t ,c u ,t ,c

c t u
Vol Volλ

∈ ∈ ∈
+ −∑ ∑ ∑

C T U
 (15) 

where λu,t,c are the Lagrangean multipliers for constraint 

(14). Observe also that the inventory variable , ,
A

u t cVol is 

used in the first and fifth terms. This procedure leads to 
the following subproblem for a given time period t and 
scenario c: 
 
Subproblem RMPLRt,c 

( )
u

t ,c A
t ,c u ,t ,c u ,t ,c u ,t ,c

p
Max z prob Cp QF Vol

∈
= −∑RMP-LRS

U
 

t ,c u ,t ,c u,s,t,c u u ,t ,c
u s uf u f

prob Cf QS Cb y
∈ ∈ ∈

− −∑ ∑ ∑
U SO U

 

{ }
 u u,v u ,v ,t ,c u,t,c

vu , uf p

[ Cr ( Cv .V )]  QF
∈∈

− +∑ ∑
VOU\ U U

 

A
u ,t ,c u ,t ,c

u p
Cinv Vol

∈
− ∑

U
 

( )B A
u ,t 1,c u ,t 1,c u ,t ,c u ,t ,c

u p
Vol Volλ λ− −

∈
+ −∑

U
 (16) 

Subject to: 
Constraints on process units: Eqs (2-6) 

Production balance: Eq (13) 
Petroleum supply constraint: Eq (8) 
Operation and product quality specifications: Eq (9-12) 
For every time period t and scenario c 
 
Constraints in subproblem RMPLRt,c are defined simi-
larly to the ones from Section IV; note however that 
these constraints are solved independently for each time 
period and scenario. In other words, the problem for 
each time period and scenario contains only its corre-
sponding set of constraints and therefore these are not 
indexed in t and c. An upper bound to the optimal solu-
tion of (1) is then given as the sum of the optimal objec-

tive values t ,czRMP-LRS that are obtained with each sub-

problem RMPLRt,c over the planning horizon. 
t,c

t c
Max z Max z

∈ ∈
= ∑ ∑RMP-LR RMP-LRS

T C
 

B
u ,T ,c u ,T ,c

u cp
Max Volλ

∈ ∈
+ ∑ ∑

U C
 (17) 

where T denotes the last time period. However, it may 

be noted that the duplicated variable , ,
B
u T cVol only ap-

pears on the objective function and therefore would be 
unbounded; thus, it is substituted by its copy that is 
bounded at T-1. Hence  

t,c A
u ,T ,c u ,T ,c

t c u cp
z z Volλ

∈ ∈ ∈ ∈
= +∑ ∑ ∑ ∑RMP-LR RMP-LRS

T C U C
 (19) 

 
B. Primal Subproblems of RMP  
Concerning Problem RMP, if the inventory variables 

are fixed at F
u ,t ,cVol , connection among time periods is 

also eliminated. Therefore |T| independent subproblems 
can be defined for every time period t and scenario c as 
follows: 
 
Subproblem RMPSt,c 

( )
u

t ,c F
t ,c u ,t ,c u ,t ,c u ,t ,c

p
Max z prob Cp QF Vol

∈
= −∑RMPS

U
 

t ,c u ,t ,c u,s,t,c u u ,t ,c
u s uf u f

prob Cf QS Cb y
∈ ∈ ∈

− −∑ ∑ ∑
U SO U

 

{ }
 u u,v u ,v ,t ,c u,t,c

vu , uf p

[Cr ( Cv .V )] QF
∈∈

− +∑ ∑
VOU\ U U

F
u ,t ,c u ,t ,c

u p
Cinv Vol

∈
− ∑

U
 (20) 

Subject to  
Eqs. (2-12) 
 

In (20), F
u ,t ,cVol  denotes a fixed value for the inventory 

variables. The objective function given by (1) is then 
equivalent to: 

t ,c

t c
z z

∈ ∈
= ∑ ∑RMP RMPS

T C
 (21) 

Another possible primal subproblem is obtained by 
solving problem RMP with fixed the binary variables to 
the values obtained with the solution of the dual sub-
problem presented in section A. 
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VI. PROPOSED STRATEGIES 
Fig. 4 presents the modified cross decomposition 
method of Fig 3 applying the dual and primal subprob-
lems described in the previous section. In this figure, 
ZUBk and ZLBk represent upper and lower bounds in 
iteration k, respectively, whereas UB and LB represent 

global upper and lower bounds, respectively. Other 
symbols are: The main difference between Strategy 1 
and Strategy 2 is that instead of fixing the binary vari-
ables in the primal subproblem as in Strategy 1, the in-
ventory variables (Volu,t,c) are fixed at the values ob-
tained by the dual subproblem. 

 

 
Fig. 4 – Studied strategies 

 

VII. RESULTS AND DISCUSSION 
Strategies described in the previous section were used to 
solve the production planning problem for the REVAP 
refinery with up to 10 time periods and 5 scenarios. The 
same problem was solved in Neiro and Pinto (2005) 
without the use of Lagrangean decomposition. Figure 5 
shows the computational solution time of the full-scale 
Problem RMP and of the two proposed strategies. All 
models and solution algorithms were coded in the 
GAMS (Brooke et al., 1998) modeling environment. 
DICOPT++(Viswanathan and Grossmann, 1990) was 
used to solve the MINLP problems. The NLP subprob-

lems were solved using CONOPT2 (Drud, 1994) and 
the MILP subproblems were solved with OSL (IBM, 
1991) on a PC, Pentium M / 1.6 MHz platform. Table 2 
shows the increase in problem size in terms of the num-
ber of constraints, continuous variables, binary variables 
and solution time for the full-scale problem with the 
increase of the number of time periods and 5 scenarios, 
which represents the largest instance. Figure 6 shows 
the comparison of the objective function value obtained 
through the proposed strategies from that obtained for 
Problem RMP using DICOPT++. 
 

If any subproblem 
is infeasible, add cut 

Initialize:select Kmax, ε, r, (n | r <n< Kmax), ωk, λ1
u,t,c 

 set UB = +∞ and LB = -∞.  

Solve dual subproblem through |T| + |C| 
subproblems RMPLRt,c at λk

 u,t,c 

Set ZUBk = zRMP-LR  given by (19)  

If ZUBk  < UB then UB = ZUBk 

1 / 2  if k k r
k k ZLB ZLBω ω −
+ = =  

Update λk with subgradient method 

( )
( )

1
, , , , , , , ,

2

, , , ,

k k B A
u t c u t c k u t c u t c

k

k k B A
u t c u t c

Vol Vol

ZUB LB

Vol Vol

λ λ σ

σ ω

+ = + −

−
=

−

 

k = k + 1 

Return LB and 
corresponding 
solution 

Solve primal subproblem with 
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Fig. 5 – Solution time results for Strategies 1 and 2 and DICOPT++ 
 

Table 2 – Statistics of Problem RMP as function of the number of time period and 5 scenarios 

 Number of time periods  

 1 2 3 4 5 6 7 8 9 10

variables 1,586 3,171 4,756 6,341 7,926 9,511 11,096 12,681 14,266 15,851 
binary variables 50 100 150 200 250 300 350 400 450 500 
constraints 1,366 2,731 4,106 5,461 6,826 8,191 9,556 10,921 12,286 13,651 
solution time*  305.1 608.0 912.3 1403.9 1785.1 2698.2 3571.2 305.1 607.9 912.3 

*
The NLP subproblems were solved using CONOPT2 (Drud, 1994) and the MILP subproblems were solved with OSL 
(IBM, 1991) on a PC Pentium M / 1.6 MHz platform 
 

It can be seen from Fig. 5 that both decomposition 
strategies showed better performance in comparison 
with DICOPT++ in terms of computational time. This 
agrees with the expected behavior that the solution 
process is improved by solving a set of smaller prob-
lems rather than a single large full-scale problem, re-
gardless of the number of scenarios. In Fig. 5d it can 
also be observed that Strategy 2 also shows smaller so-
lution times in comparison with those obtained for 
Strategy 1. This can also be explained in terms of the 
size of the subproblems. Strategy 1 solves smaller 
MINLP dual subproblems, whereas it deals with larger 
NLP primal subproblems. Strategy 2, on the other hand, 
solves small MINLP problems in terms of both dual and 
primal subproblems. 

Regarding the quality of the solutions, that is, how dif-
ferent the solution found in the full-scale problem and 
that in the proposed strategies are, the opposite behavior 
is observed. This analysis is presented in this work in 
terms of the objective function in Fig. 6 and it can be 
observed that Strategy 1 presents slightly better per-
formance in comparison with Strategy 2.  

VIII. CONCLUSIONS 
This paper showed that in order to solve more realistic 
problems that encompass multiple time periods it is im-
perative to rely on decomposition techniques. Two de-
composition strategies were proposed and have per-
formed very well in the long-range production planning 
of a petroleum refinery under uncertainty. Strategy 1 

a) 1 scenario b) 2 scenarios 

c) 3 scenarios d) 5 scenarios 
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stands for a dual problem that is given by a Lagrangean 
relaxed problem and whose primal problem corresponds 
to the original problem with the binary decision vari-
ables fixed to the values obtained with the dual problem. 
The Lagrangean multipliers are updated at each iteration 
through the subgradient optimization. Strategy 2 differs 
from Strategy 1 only with respect to the primal problem 
whose fixed decision variables are not the same. Strat-
egy 1 fixes binary variables, whereas Strategy 2 fixes 
inventory variables. Both strategies showed to be very 
efficient for problems that consider uncertainty in the 
way of discrete scenarios.  

Moreover, it is important to note that the paper relied on 
model instances that could be solved by the decomposi-
tion as well as the full-scale methods, since the main 
objective was to compare the computational effort and 
the quality of the solutions for all approaches. 

Although global optimality is not guaranteed (neither it 
is in the solution of standard MINLP), such methods 
perform relatively well and can be extended to large-
scale problems.  
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Fig. 6 – Comparison between the objective functions obtained 

by DICOPT++ and by the proposed strategies. 
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