
Latin American Applied Research 37:59-63 (2007)

59

FPGA DESIGN OF AN EFFICIENT AND LOW-COST SMART PHONE
INTERRUPT CONTROLLER

M. DE ALBA†, A. ANDRADE†, J. GONZÁLEZ‡, J. GÓMEZ-TAGLE‡ and A. D. GARCÍA†

† Depto. de Ingeniería Eléctrica y Electrónica, Tecnológico de Monterrey, Campus Estado de México, Atizapán
de Zaragoza, México, 52926 México

{a00464139, marcos.de.alba, garcia.andres}@itesm.mx
‡ Centro de Diseño Electrónico, Tecnológico de Monterrey, Campus Guadalajara, Zapopan, Jalisco, 45201 México

{jair, javier.gomeztagle}@itesm.mx

Abstract−− In this work we have designed and

implemented an efficient platform-level interrupt
controller for a PXA270 microprocessor-based
smart phone. Although current hardware develop-
ment boards include this type of controllers, for spe-
cific applications most of them are costly and include
too many interrupt sources that represent a waste
for a particular design. For this reason we designed
our own interrupt controller which is capable of de-
tecting interrupt sources coming from different de-
vices that request microprocessor service. The devel-
oped interrupt controller is efficient and low-cost
due to the small number of register and logic gates
required for its implementation, as well as for the
small number of levels to be traversed in the circuit´s
critical execution path.
Keywords−− Interrupt controller, Codesign,

FPGA, low-cost, effective, PXA270, smart phone.

I. INTRODUCTION
Specific-purpose microprocessors are involved in the
design of mobile digital systems, such as PDAs or
Smart Phones. A microprocessor provides flexibility
and scalability to the system. The flexibility is due to
different programs being implemented with the same
hardware. The scalability is due to the integration of
additional hardware components by just modifying rou-
tines in the application program.

When the system performs several applications, the
hardware and software become more complex. On the
hardware side, additional devices are needed.

On the software side a manager program, like a real-
time operating system is required, otherwise conflicts
among different devices may arise. One effective
mechanism to manage hardware devices is an interrupt
controller.

An interrupt controller is a hardware component ca-
pable of detecting request signals coming from different
devices. The request signals are generated by devices to
indicate that they need some service to continue work-
ing. For example, pressing a keyboard key attached to a
personal computer sends the equivalent digital code to
the CPU. In there, an interrupt controller detects that the
keyboard device needs attention, therefore an interrupt
service routine is assisted in order to activate the input

port associated to the keyboard and read it. The data that
was read from the port corresponds to the value of the
pressed key. Afterwards, depending on the application
being used, for example a word processor, the available
data might be displayed in the screen at the current cur-
sor position.

In a more complex microprocessor-based architec-
ture, which contains a high number of peripheral de-
vices, it is desirable to have an interrupt controller to
identify which device makes requests at which time.
These devices must allow the microprocessor to define
the priority level of each interrupt service.

In this work we developed a FPGA platform-level
hardware software codesign of an efficient and low-cost
interrupt controller for a smart phone to manage re-
quests originated by several devices. The developed
interrupt controller involved a hardware software
codesign process because the smart phone is being de-
signed for a particular operating system (Windows,
2005) and the interrupt controller features have taken
into account the target operating system characteristics,
to enhance the development and maintenance of the
smart phone. The interrupt controller has been designed
for a particular smart phone that is being designed as a
cooperative effort between the authors´ institutions with
the support of Instituto Tecnológico de Monterrey, Intel
Corporation and the Secretaría de Economía de México,
among others. The smart phone is to become a commer-
cial product within this year. We have developed this
interrupt controller because the available hardware de-
velopment board of the used microprocessor needs and
external interrupt controller in order to service I/O de-
vices hierarchically.

In our design the core microprocessor is an Intel
PXA270 (Intel, 2004a; Intel, 2004b; Intel, 2004c; Intel,
2004d; Intel, 2004e; Intel, 2004f; Intel, 2004g). Al-
though the PXA270 has a hardware-level interrupt con-
troller, a platform-level is needed. This type of control-
ler allows handling requests from a device source to the
appropriate target device. It also allows having several
requests coming from the same device.

The rest of the paper is organized as follows. The
Related Work section describes some previous interrupt
controller designs. The Implementation of the Platform-
level Interrupt Controller section explains our design in
detail. The section Evaluation of the Interrupt Controller

Latin American Applied Research 37:59-63 (2007)

60

describes the methodology that we used to prove the
functionality and validation of our design. In the Results
section we show views of our controller working. In
Future Work and Conclusions is explained what direc-
tion we are heading with our design and conclude what
are the advantages and disadvantages of the proposed
controller.

II. RELATED WORK
Interrupt controllers are used in personal computers to
manipulate interrupt requests generated by peripheral
devices, one of the most popular is Intel´s 8259 (Intel,
1995). However, since mobile phones contain a smaller
number of devices than a personal computer, this type
of interrupt controller (IC) is too costly to be used in a
smart phone. Although there are programmable inter-
rupt controllers, like Intel´s 8259, to maintain a simple
smart phone design we liked to avoid sending com-
mands to the IC. For this reason a non-programmable IC
was proposed.

An interrupt controller for a network card is defined
in (Nakashima, 2002). It is particularly designed to han-
dle interrupt requests when a set of network packages
arrives to the controller.

A self-timed asynchronous IC is described in (De
Gloria, 1994). It was specifically designed for the
ST9026 micro-architecture. Since these standard solu-
tions can not easily be adapted to our smart-phone, we
preferred to design a custom IC.,

The interrupt controller described in this work does
not need to be programmed in order to detect interrupts
from different sources. This feature makes it simple and
fast. In the next section we describe the proposed inter-
rupt controller.

III. IMPLEMENTATION OF A PLATFORM-
LLEVEL INTERRUPT CONTROLLER

Figure 1 shows a block diagram of the proposed plat-
fom-level interrupt controller. The design consists of a
set of hardware queues to store pending interrupts.
When two or more devices make an interrupt request
simultaneously, the controller identifies which device
has the highest priority. The controller immediately
generates an interrupt request to the microprocessor and
it indicates the device identification number, ID. The
interrupt requests of the devices with smaller priorities
are stored in the corresponding queues. Interrupt re-
quests are then serviced from the queues obeying to the
priority of each device. Devices are assigned priorities
according to the pin where they are connected.

When an interrupt request is sent to the microproc-
essor it is also sent the ID of the device that generated
the interrupt. A queue selector always chooses the
queue with highest priority.

Another component of the controller is the interrupts
buffer. This block detects interrupt signals with different
frequencies –since different devices might generate re-
quests at different rates-.

Fig. 1. Block diagram of platform-level interrupt controller

At the time the microprocessor detects an interrupt it
sends an acknowledge signal to the controller. The re-
cent serviced interrupt is removed from its queue. Pend-
ing interrupts are removed from the queues starting with
the highest priority queue and ending with the lowest
priority queue. If new requests arrive while interrupts
are being serviced, these will be stored in the appropri-
ate queue.

The design of the interrupt controller was developed
using VHDL, simulated and verified using Xilinx´s ISE
6.2i and implemented in a Xilinx Spartan II FPGA.

The interrupt controller was implemented using a
structural organization. It contains the following main
entities:

• InterruptController
• NewInterruptDetection
• DeviceIDDeco
• AcknowledgeDetection
• PendingInterrupts
• InterruptGenerator

The module InterruptController, shown in
Fig. 2, contains inputs and outputs to the interrupt con-
troller. It has the following input signals: CLK clock
signal, n interrupt sources (one for each device), ACK
acknowledge, which indicates that the last interrupt has
been serviced, and RESET. It has the following output
signals: GPIO[0], which connects to the microprocessor
INT input, and deviceID that provides the code of each
device. For testing and verification purposes, 4 and 16
interrupt sources where generated. However, the design
is scalable to n sources. The microprocessor servicing
the interrupts has to generate the ACK signal, which is
twice as long as the FPGA´s clock signal in order to be
detected.

Fig. 2. Interrupt Controller module block diagram

Devices

In
ts

 b
uf

fe
r

Q 1

Q 2

Q 3

Q 4

Queue Selector

MUX

Interrupt controller (with 4 interrupt sources)

Ack Detector

Interrupt Generator

Pr
oc

ce
so

r

Ack Signal

Device ID

GPIO(0)

1

2

3

4

M. DE ALBA, A. ANDRADE, J. GONZÁLEZ, J. GÓMEZ-TAGLE, A. D. GARCÍA

61

The NewInterruptDetection module detects
interrupts coming from different sources with different
frequencies. It has a register that holds the state of pend-
ing interrupts. Interrupts are detected at rising edges.
New interrupts are generated only if new rising edges
are detected.

The DeviceIDDeco module is a digital de-
coder that generates the identification code of the de-
vice that is being serviced by the microprocessor.
The AcknowledgeDetection module is a reg-
ister that holds the value of the last acknowledged inter-
rupt, which is used to control pending interrupts.

The PendingInterrupts module is a mul-
tiple-entry register. It holds pending interrupt requests
for each of the interrupt sources. It updates its state once
the ACK signal has been received.
 The InterruptGenerator component produces
the interrupt request signal that is sent to the microproc-
essor. It also sends a vector ID to the DeviceIDDeco
module. The period of this signal is related to the period
of the FPGA´s clock multiplied by a general purpose
input/output duration constant.

The interrupt controller handles interrupts according
to priorities. Every device has a different priority de-
pending on the attached pin. The lowest significant bit is
assigned to the device with highest priority, and the
most significant bit is assigned to the device with lowest
priority.

IV. EVALUATION METHODOLOGY
To evaluate the correctness of the proposed interrupt
controller, a PXA270 emulator was built based on a
personal computer, a microcontroller AT90S8535, and a
Xilinx Spartan 3 FPGA with ISE 6.2i and programming
interfaces in java.

Figure 3 shows a window of the ISE tool, on the
right side of the window part of the interrupt controller
VHDL specification is listed.

The developed interrupt controller has been tested
and verified using a personal computer. A program that
generates interrupt signals (organized as interrupt vec-
tors) is used as a benchmark to validate the correct re-
sponse of the interrupt controller.

The program generates random interrupt vector re-
quests. These vectors where sent to the FPGA through
the serial port. The interrupt controller was implemented
in a Xilinx Spartan II FPGA. It detects the requests and
processes them according to their priorities. Interrupts
are extracted from the queues one by one from highest
to lowest priority. The interrupt controller selects an
interrupt and sends a request signal to a microcontroller
(an Atmel AT90S8535, running at 16MHz). The INT
pin of the microcontroller detects the interrupt. The mi-
crocontroller emulates the handling of the interrupt re-
quest and sends an ACK signal to the interrupt control-
ler. It extracts also the next interrupt request to be proc-
essed. For simplicity, we used only one INT line on the
microcontroller. However, more than one external inter-

rupt line might be used to emulate the functionality of
the interrupt controller.

Fig. 3. VHDL specification of the interrupt controller using

ISE 6.2i
In order to implement an evaluation, the program

running in the personal computer is set to a number of
interrupt requests. For example, setting this number to
65,536 (for 16 different devices), the program is started

Latin American Applied Research 37:59-63 (2007)

62

and interrupt vectors ranging from 0 to 65,535 are gen-
erated and sent one by one through the serial port. The
FPGA reads the vectors and fills the queues to avoid
stalling the processing of requests. Since the requests
arrive more rapidly than the processing speed of the
microprocessor, the queues get filled in. However, they
are emptied as interrupts are serviced.

On the AT90S8535 microcontroller side the 8-bit
port B was utilized for proving the correctness of the
interrupt controller. Figure 4 shows the bit assignment
for port B.

Fig. 4. AT90S8535 Port B bit assignment

The bits B0 to B3 are utilized for interrupt sources
IS0 to IS3.
Bit B4 is assigned to handle the RESET signal.
Bit B5 is assigned to handle the ACK signal.
Bits B6 and B7 are used for handling the device ID.

Notice that in this implementation, four devices gen-
erate interrupts. However, during evaluation we imple-
mented the controller to handle up to 16 different de-
vices and generated up to 64K interrupt requests. As
long as interrupt requests were generated, they were
handled by the interrupt controller in the FPGA. Inter-
rupt requests were processed according to their priori-
ties. Figure 5 shows an emulation of the interrupt con-
troller. The window on the top to the left shows a set of
interrupt request vectors, the window on the top to the
right shows the number of pending interrupt requests, as
can be seen, the requests at 00 have the highest priority,
that is why they have the smallest number of pending
interrupts. The window on the bottom shows an ex-
change of data between the interrupting devices and the
microprocessor.

A Data Sent message indicates that a data has been
sent by the device. The Data Received message indi-
cates that the microprocessor has just received the data.
Then, an ACK message is sent to the personal computer
to indicate that the interrupt was handled by the inter-
rupt controller and passed over to the microprocessor
hierarchically. All the Data Received messages have
received a “1”, this is because the highest interrupt level
which is being serviced has sent a “1”. Once all inter-
rupt requests have been serviced, the window of pend-
ing interrupt vectors is cleared.

We explored the design space of the interrupt con-
troller. In the implemented emulated system we in-
cluded 16 different interrupt sources with a 256-entry
queue. For such implementation we obtained the FPGA
area usage listed in Table 1. In average, a 12.6 % of the
FPGA area is used with such design.

We also explored the interrupt controller design
space for larger implementations, being the largest one
with 32 interrupt sources and a 32-entry queue, for

Fig. 5. An emulation of the interrupt controller (interface on

the personal computer side)

Table 1. FPGA area usage for implemented interrupt controller

 Number of Slices: 112 out of 768 14%

 Number of Slice Flip Flops: 47 out of 1536 3%

 Number of 4 input LUTs: 198 out of 1536 12%

 Number of bonded IOBs: 9 out of 96 9%

 Number of GCLKs: 1 out of 4 25%

which we obtained the FPGA area usage listed in table
2. For this new design an average of 52.2 % of FPGA
area is used, for the smart phone type of applications no
more than 32 devices might be connected, for this rea-
son we found our proposed interrupt controller to be
feasible even for larger number of devices in the chosen
FPGA.
Table 2. FPGA area usage for 32 interrupt sources and a 32-entry
queue.

 Number of Slices: 762 out of 768 99%

 Number of Slice Flip Flops: 231 out of 1536 15%

 Number of 4 input LUTs: 1250 out of 1536 81%

 Number of bonded IOBs: 40 out of 96 41%

 Number of GCLKs: 1 out of 4 25%

M. DE ALBA, A. ANDRADE, J. GONZÁLEZ, J. GÓMEZ-TAGLE, A. D. GARCÍA

63

V. CONCLUSIONS AND FUTURE WORK
We designed and evaluated a platform-level interrupt
controller for a smart phone based on the PXA270 mi-
croprocessor. We integrated a digital system to prove
the correct functionality of the system by randomly gen-
erating interrupt requests from a personal computer at-
tached to the interrupt controller implemented on a Xil-
inx Spartan II FPGA. We emulated the PXA270 micro-
processor with a microcontroller, we generated interrupt
signals within the operating frequency range of the
PXA270 microprocessor to guarantee the correctness of
our interrupt controller.

The developed interrupt controller uses 25,200 gates
of the FPGA, allowing other peripheral modules
(needed by the smart phone) to be implemented in this
device in order to optimize the PCB area. The use of
FPGAs in this kind of projects allows us to upgrade our
design by adding new elements to the smart phone.

REFERENCES
Aldec Corp. 8259, IP Core Programmable Interrupt

Controller Datasheet (2004).
Alatek Inc. Alatek AL8259 IP Core Application Note.

Dec. (1999).
De Gloria, A., P. Faraboschi, and M. Olivieri, “A Self

Timed Interrupt Controller: A Case Study in Asyn-
chronous Micro-Architecture Design,” Proc. of
ASIC94, Rochester, NY, 296-299 (1994).

Intel Corp. 80C186EB/80C188EB Microprocessor
User´s Manual (1995).

Intel Corp. Intel PXA27x Processor Developer´s Kit
Parts Lis. (2004a).

Intel Corp. Intel PXA27x Processor Family Design
Guide (2004b).

Intel Corp. Intel PXA27x Processor Family Devel-
oper´s Manual (2004c).

Intel Corp. Diagnostics for the Intel PXA27x Processor
Developer´s Kit. User´s Guide (2004d).

Intel Corp. FPGA Code for the Intel PXA27x Processor
Developer´s Kit Main Board (2004e).

Intel Corp. Intel PXA27x Processor Optimization Guide
(2004f).

Intel Corp. Intel PXA27x Processor Developer´s Kit
Schematics (2004g).

Nakashima, K., S. Kusakabe, H. Taniguchi and M.
Amamiya, “Design and Implementation of Inter-
rupt Packaging Mechanism,” Proc. of the Interna-
tional Workshop on Innovative Architecture for
Future Generation High-Performance Processors
and Systems, Los Alamitos, CA, 95-102 (2002).

Windows CE. http://msdn.microsoft.com/embedded/
windowsce/default.aspx (2005).

Received: April 14, 2006.
Accepted: September 8, 2006.
Recommended by Special Issue Editors Hilda Larrondo,
Gustavo Sutter.

