
Latin American Applied Research 42:257-265(2012)

 257

A NEW FORMULATION TO THE SHORTEST PATH PROBLEM

WITH TIME WINDOWS AND CAPACITY CONSTRAINTS

R. DONDO

INTEC (Universidad Nacional del Litoral - CONICET). Güemes 3450 – (3000) Santa Fe – República Argentina
Tel. +54 342 4559174/77 ; Fax: +54 342 4550944. E-mail: rdondo@santafe-conicet.gov.ar

Abstract The Shortest-path problem with time-

windows and capacity constraints (SPPTWCC) is a
problem used for solving vehicle-routing and crew-
scheduling applications. The SPPTWCC occurs as a
sub-problem used to implicitly generate the set of all
feasible routes and schedules in the column-
generation formulation of the vehicle routing prob-
lem with time windows (VRPTW) and its variations.
The problem is NP-hard in the strong sense. Classi-
cal solution approaches are based on a non-
elementary shortest-path problem with resource
constraints using dynamic-programming labeling al-
gorithms. In this way, numerous label-setting algo-
rithms have been developed. Contrarily to this ap-
proach and with the aim to obtain elemental and op-
timal solutions, we propose a new mixed integer-
linear formulation to the SPPTWCC. Some valid in-
equalities that can be used to strengthen the linear
relaxation of the SPPTWCC are also proposed. Nu-
merical experiments on some VRPTW instances tak-
en from Solomon's benchmark problems show that
(near) optimal solutions are easily obtained in spite
of the considerable problem size. Also the number of
generated columns is kept at a very low level.

Keywords shortest path problem, MILP formu-
lation, column generation, vehicle routing.

I. INTRODUCTION
The shortest-path problem with time-windows and ca-
pacity constraints is a problem widely used for formu-
lating vehicle-routing and crew-scheduling applications
(Desaulniers et al., 1998). The SPPTWCC consists of
finding the shortest path from a source-node to some
nodes of a network (while fulfilling timing and capacity
constraints) that ends in a sink node. The term “shortest
path” should be carefully interpreted: given costs asso-
ciated to arcs and prices associated to the nodes, the aim
is to find the least-cost path from the source node to the
sink node. The SPPTWCC occurs as a sub-problem
used to implicitly generate the set of all feasible routes
in the column-generation formulation of the vehicle
routing problem with time windows (VRPTW) and its
variants (Cordeau et al., 2002). It is NP-hard in the
strong sense. In the VRPTW, the source and sink nodes
are usually located in the same place. This place is
commonly named “the depot”. For n-depot routing
problems, n source/sink pairs placed in the same loca-
tion are usually defined. We may relax the problem to
consider variants with source and sink nodes placed on

different locations. This work deals just with the single-
depot case but the more general cases are straight for-
ward.

The SPPTWCC is also a problem with an economic
meaning. I.e. given a set of profits associated to the
nodes we aim to choose, at a non-zero cost, a subset of
nodes that maximizes our net profit.

Classical solution approaches are based on the non-
elementary shortest-path problem with resource con-
straints, using pseudo-polynomial dynamic program-
ming labeling algorithms. Very refined and complex al-
gorithms of this type have been developed. (See e.g.
Houck et al., 1980; Irnich and Desaulniers, 2005 and
Irnich and Villenueve, 2006). These algorithms are very
effective in generating, in addition to the best route,
many solutions per iteration. On the contrary, our pur-
pose is just to obtain the optimal solution to the
SPPTWCC. Consequently, we propose a new mixed in-
teger-linear formulation (MILP) to the problem.

This work is organized as follows: Section 2 de-
scribes the problem and presents its conventional MILP
formulation. Section 3 presents a novel MILP formula-
tion based on global precedence relationships. Ad-
vantages and weaknesses of this model are also dis-
cussed in this section. In Section 4 several pre-
processing and polyhedral techniques are applied to the
new formulation in order to improve its numerical
resolubility. Numerical examples that arise from the
well known Solomon benchmark collection are present-
ed and discussed in Section 5. Finally, the conclusions
are outlined in section 6.

II. PROBLEM DEFINITION AND ITS USUAL
MATHEMATICAL MODEL

Consider a route-network represented by an undirected
graph G{I  p, A } with I = {i1, i2, ..., in} denoting the
set of nodes or customers and p representing a source
/sink node called “the depot”. Nodes and the depot are
connected by a set of arcs A = {(i, j) / i,j  I  p}.
Known load and price vectors L = [l1 , l2, …, ln] and  =
[1, 2, …n] are associated to the customer set I. Loads li
must be collected within a time window [ai, bi] on each
node i  I. The parameters ai stands for the earliest pos-
sible start-time of the service and the parameters bi
states the latest possible start-time of the service at the
node. In addition, travel-costs C = {cij} and travel times
 = {tij} are given data for any route segment (i,j)  A.
Moreover, the service time on node i is denoted sti. For

Latin American Applied Research 42:257-265(2012)

 258

each cargo li collected node i  I, an associated price i
is accumulated. It is assumed that the triangle inequality
is satisfied by the travel costs and travel times, i.e. cik +

ckj  cij and tik + tkj  tij . The solution to the SPPTWCC
problem must: (1) Maximize the net profit collected
from the selected subset of nodes I opt I. This profit is
defined as the sum of collected prices minus the cumu-
lated cost incurred by traveling arcs to pick them. (2)
The resulting route must start and end on the depot p.
(3) The selected nodes must be visited once, so an ele-
mental path is designed. (4) The total collected load
must never exceed a given capacity q. (5)The time-
length used to collect loads and premiums must be
shorter than the maximum allowed working time tmax.
(6)The service at every customer site i must start within
the specified time window [ai, bi]. This problem is usu-
ally formulated as follows:

Min   
  











pIi
ij

pIj
ij

Ii
ij

pIj
iji xxc  (1)

Subject to
qxl

Ij
ij

Ii
i 


 Ik  (2)





Ii

pix 1 (3)

 
 


Ii Ij

kjik xx 0 jiIji  :, (4)





Ii

ipx 1 (5)

jijTijii TxMtstT )1(Ii (6)












ii

ii

bT

Ta Ii (7)

maxttstT ipii  Ii (8)

 1,0x

while Eq. (1) states the objective function above men-
tioned, Eq. (2) states a capacity constraint. Constraints
(3), (4) and (5) are flow constraints resulting in a path
from the depot p to the subset of chosen nodes and back
to the depot. Constraints (6) and (7) are timing con-
straints and constraint (8) limits the routing time to a
maximum value tmax. The binary variable xij indicates if
arc (i,j)  A is used (xij = 1) or not (xij = 0). The parame-
ter γij is the reduced cost (cij - i) of using the arc (i,j).
While cij is a non-negative number, γij can be any real
value. As the SPPTWCC is NP-hard, no algorithm with
a worst- case running-time bounded by a polynomial in
the size of the problem is known. To optimally solve
this problem, we have to use an enumerative algorithm
such as branch and bound with a worst-case solution-
time that is exponential in the size of the input. Note
that the formulation given by Eqs. (1) to (8) is, in prac-
tice, unsolvable because of the high number of binary
variables xij. Furthermore, the weak linear relaxations of
constraints (6) lead to enormous search trees. Therefore,
in the context of column generation algorithms, the
most common solution approach to the SPPTWCC is a
dynamic-programming label-setting algorithm (See
Desrochers et al., 1992). While searching for the opti-
mal route, these procedures generate many non-optimal
but useful routes. Very refined and complex algorithms

of this type have been developed (Houck et al., 1980;
Irnich and Desaulniers, 2005; and Irnich and Villenueve
2006). These methods often lead to problems with thou-
sands of columns that are very hard to solve. Ropke and
Cordeau (2009) claim that although the SPPTWCC can
initially be solved with heuristic algorithms, whenever
the heuristic can no longer produce columns with nega-
tive reduced costs, it is necessary to switch to exact
methods and always the last pricing problem must be
solved to guaranteed optimality in order to prove that
the lowest bound is valid. Consequently, optimizing
formulations for the SPPTWCC are of crucial im-
portance to prove the optimality of a given solution.
This constitutes the main motivation for developing the
formulation to the SPPTWCC to be next presented.

III. A REFORMULATION TO THE SPPTWCC
The computational hardness of most combinatorial
problems has inspired researchers to develop good for-
mulations that are expected to reduce the size of the
enumeration tree and the computation times of these
problems. In such a way, we can reformulate the
SPPTWCC as follows:
Min











Ii
iiYCV  (9)

subject to:





Ii

ii qYw (10)












ipi

ipi

tT

cC Ii (11)

   
   

 
  
































jicijTijjji

jicijcijji

jicijTijiij

jicijcijij

YYMSMtstTT

YYMSMcCC

YYMSMtstTT

YYMSMcCC

2

2

21

21

jiIji  :,

(12)

 
 











icijii

iciji

YMtstTTV

YMcCCV

1

1 Ii
(13)












ii

ii

bT

Ta Ii
(14)

maxtTV 

 1,0, iji SY

(15)

The objective function (9) is expressed as minimization
of the difference between the overall travelled distance
(CV) and the total quantity of collected prices ( iI

iYi). Eq. (10) is a capacity constraint equivalent to eq.
(2). Eq. (11) is like eq. (3) but states flow constraints us-
ing continuous variables. It computes the least travelling
costs and times (Ci and Ti) from the depot p to a given
node i. Eq. (12) combines and reformulates the informa-
tion from constraints (4) and (6) in order to sequence
nodes. In this way, let us assume that nodes i and j are
both in the optimal path (Yi = Yj = 1). Then, the relative
ordering of nodes i and j becomes determined by the se-
quencing variable Sij. In such a case, node j can be a di-
rect/indirect predecessor of node i or viceversa. If node i
is visited before j (Sij = 1), the travel cost from node i to

R. DONDO

 259

node j (Cj) must always be larger than Ci by at least cij.
Furthermore, the arrival time at node j (Tj) should be
larger than Ti by at least the sum of the traveling time tij
and the service time (sti) at the node i. In case node j is
visited earlier (Sij = 0) , the reverse statements hold-on.
Eqs. (13) states that the overall traveling cost (CV) must
always be larger than the traveling expenses from the
depot to any node i (Ci) along the tour by at least the
amount cip. Also, the total time (TV) required to com-
plete the tour is found by adding the sum of both the
service time sti at node i and the travel time tip along the
edge (i,p) to the initial service time at the node last vis-
ited i. Since the node last visited is not known before-
hand, the eq. (13) must be written for every node i  I.
Eqs. (14) and (15) are time-windows and maximum
routing time constraints. This formulation differs from
the usual formulation to the SPPTWCC, given by Eqs.
(1)-(8) in the following main issues:
 It uses a continuous representation for both the time

domain (variables TV and Ti for all i  I) and the
cost domain (variables CV and Ci for all i  I).

 The new formulation handles node-visit and node-
sequencing decisions through different sets of binary
variables. The variable Yi indicates if node i  I be-
longs to the optimal path (Yi = 1) or not (Yi = 0)
while the variable Sij set the generalized precedence
relationship between nodes (i, j)  I: i < j if both are
in the optimal path (Yi + Yj = 1). Constraints (12)
become redundant whenever nodes i and/or j are not
in the optimal path (Yi + Yj  1). In such a case, the
constraint will state that Ci, Ti, Cj and Tj are all larger
than a large negative number.

 The reformulation uses the concept of generalized
predecessors for sequencing variables. Variable Sij
indicates that node i is visited before (Sij = 1) or after
(Sij = 0) node j just in case both nodes belong to the
optimal tour. This variable indicates both direct and
indirect precedence relationships. I.e. if i is a direct
predecessor of j, the term (ci  ci + cij) will be satis-
fied as equality. If i is a indirect predecessor of j, the
inequality sign “>” will become active.

Our formulation is aimed at limiting one flaw of the
original one; the high number of 0-1 variables. More
precisely we have

O[I (I-1)] binary variables;
O[I] continuous variables;

O[3 + 3I + I (I-1)] constraints
on the conventional formulation and

O[I + ½I (I-1)] binary variables;
O[2I + 2] continuous variables;

O[6I + 4I (I-1) + 2] constraints
on the new formulation. So, a considerable saving of 0-
1 variables is achieved. These can be reduced to almost
a half (if I is large) respect to the conventional formula-
tion, at the cost of increasing continuous variables and
constraints. Consequently, we have a formulation with
fewer binary variables and more constraints. This
should be favourable from a resolution point of view

and should lead to smaller branch and bound trees. Alt-
hough the new model uses fewer binary variables, great-
ly exploits "big-M" type constraints. Thus, it is expected
to have a loose continuous relaxation. It is well known
that big-M constraints can be difficult for branch and
bound solvers since they generate un-tight lower bounds
that are crucial for the efficiency of the solver. In gen-
eral, the larger M in the big-M constraint, the less tight
the formulation. Then, the big-M value should be substi-
tuted by an upper bound in the terms that activates. I.e,
in the equation:

 iTijii YMtstTTV  1

the parameter MT should be replaced by an upper bound
on the term (Ti + sti + tij). In this case the bound is (bi +
sti + tij). In this way, “customized” and as small as pos-
sible big-M parameters should be introduced into each
constraint. This should lead to a higher tightness of con-
straints and therefore, the problem might be faster
solved. Nevertheless, even with this “strongest” version
of inequalities, they are very unfavourable for linear re-
laxations. Consequently, we have achieved one objec-
tive (to reduce the number of 0-1 variables) but we are
still unable to provide tight lower bounds to linear re-
laxations. Since the number of constraints with big-M
structure are higher than in the new formulation, the
original formulation (Eqs. 1-8) presents even worse
bounds. Ways to improve the linear relaxations on the
new formulation are presented in the next section.

IV. PRE-PROCESSING AND POLYHEDRAL
TECHNIQUES IN THE NEW MODEL

The size and complexity of solved integer problems can
be increased when the polyhedral theory is applied. The
underlying idea of polyhedral combinatronics is to re-
place the constraints-set of the integer-programming
problem by an alternative convexification of the feasible
points and rays of the convex hull conv(S) of the prob-
lem (von Hoesel and Aardal, 1996). Then, if we can list
the whole set of linear inequalities that defines conv(S)
we can solve the integer problem by linear program-
ming. Nevertheless, for most integer problems the
minimal number of inequalities necessary to describe
the polyhedron is exponential in the number of vari-
ables. Thus, it is unrealistic to search for the complete
set of inequalities. In addition, if generated within a
branch-and-bound tree they can be not valid throughout
the entire tree since cuts are generated assuming that
certain values are fixed. Therefore, we are interested in
a set of constraints conv(S) as small as possible and with
no a-priory value-assumptions. Then, one should con-
sider inequalities that define a facet of conv(S). They
are the “best possible” in the sense that they cannot be
“stronger” without losing some feasible mixed-integer
solutions of the original problem. Frequently only a par-
tial set of valid inequalities “located” in the neighbour-
hood of the optimal solution is useful to reduce solution
times (Hoffmann, 2000). It is worth noting that, to make
polyhedral methods work well, one important issue is
pre-processing. Important elements of pre-processing
are to reduce the size of the initial formulation and to

Latin American Applied Research 42:257-265(2012)

 260

reduce the range of constraint coefficients to make in-
stances numerically more efficient.
A. Pre-processing: In pre-processing, the formulation
is tightened before the actual optimization. This is done
by fixing some variables or by reducing the interval of
values a variable can take. This leads to a more compact
solution space and consequently to shorter solution
times. In this way, to pre-set some sequencing con-
straints, we define the following useful sets:

Nodes-compatibility relationship sets:
Set of nodes compatible with i  I : A node j is said to
be compatible with a reference node i if can be visited
either before or after i. This compatibility condition is
stated by the following set:

    iijjjjijii btstabtstaIjiCom  :)(

Ii

(16)

Set of predecessors of node i  I : A pair of nodes (i,j)
is said to be pre-ordered if they must be visited in a cer-
tain pre-determined order when time-window con-
straints are satisfied. For instance, node j is said to be a
predecessor of node i if j must be visited before node i.
This condition is defined by the following set:

    iijjjjijii btstabtstaIjie  :)(Pr

Ii

(17)

Set of successors of node i  I : Node j is said to be a
successor of node i if j must be visited after node i. Suc-
cessors of node i are specified by the following set:

    iijjjjijii btstabtstaIjiSuc  :)(

Ii

(18)

Set of nodes incompatibles with i  I : Nodes (i,j) that
cannot be assigned to the same path are called incom-
patible. The incompatibility condition for nodes j  i is
stated by the following set:

    iijjjjijii btstabtstaIjiInc  :)(

Ii

(19)

Stronger compatibility relationships can be defined if
we use the concept of “immediacy” for defining the fol-
lowing more restrictive sets:
Set of immediate predecessors of node i  I : A node j is
said to be an immediate predecessor of node i if it is a
predecessor of such a node and in addition, no other
node k  I: k  j can be inserted in a path from i toward
j. In such a case, the only feasible path connecting i and
j is the arc (i, j)  N. Immediate precedence relation-
ships are stated by the following set:

)}(min:)(Pr{)(Pr ikkIkiijjj tstbtstaiejieI  

Ii

(20)

Immediate successors are defined in the same way:
)}(min:)({)(ijkIkjijii tstbtstaiSucjiISuc  

Ii
(21)

Immediately compatible nodes are nodes i and j  I that
are compatible and, in addition, no a third node k can be
inserted between them, no matter its relative ordering.
Immediate compatibility is defined by the following set:

)}(min)(min

:)({)(

ijkIkjijiiikkIk

iijjj

tstbtstatst

btstaiComjiICom







(22)

Ii
B. Domain reduction: The narrowing of the range of a
given variable is known as domain-reduction. The re-
duction of the domain of a continuous variable refines
the information known about this variable. In the con-
text of the VRPTW and the SPPTWCC, as the triangle
inequality holds, the earliest arrival time to a customer
can be strengthened by the time used to arrive straight
from the depot and the latest arrival time can be
strengthened by driving the fastest way to the depot. So,
the customer i time-window can initially be strength-
ened from [ai, bi] to [max (ap + tpi, ai), min (bp – sti – tip,
bi)]. A further reduction can be achieved, in the context
of the formulation (9)-(15), by using two of the
Desrochers rules (Desrochers et al., 1992). Considering
that node i is assigned to the optimal tour, the beginning
of the time windows for all successor j  Suc(i) of cus-
tomer i, and the closing of time windows for all prede-
cessors j  Pre(i) of node i, can be strengthened as fol-
lows:

Ii
iijij sttaaiSucj  :)(

iijij sttaa 

(23.a)

iijij sttbbiej  :)(Pr

iijij sttbb 

(23.b)

These rules are useful in case a node is assigned to a
partial tour before the actual optimisation as i.e. in not-
root nodes of a branch and bound tree for the VRPTW.
Rules (23) not only narrow time windows. They also al-
low to move some nodes from sets Com(i) to Pre(i) 
Suc(i) and from Pre(i)  Suc(i) to Inc(i). So, the re-use
of narrowing rules and the re-definition of compatibility
sets until no further changes are achieved lead to easier
problems. In such a way, the sequencing constraints
(12) now can be split as follows:

1 ji YY  iIncjjiIji  :,

 
 










jiTijiij

jicijij

YYMtstTT

YYMcCC

2

2

 iSucjjiIji  :,

 
 










jiTijjji

jicijji

YYMtstTT

YYMcCC

2

2

 iejjiIji Pr:, 
   
   

 
  
































jicijTijjji

jicijcijji

jicijTijiij

jicijcijij

YYMSMtstTT

YYMSMcCC

YYMSMtstTT

YYMSMcCC

2

2

21

21

 iComjjiIji  :,

(12.b)

(12.c)

(12.d)

(12.e)

So, the use of narrowing rules and precedence relation-
ships can lead to a considerable saving of sequencing
variables and sequencing constraints. Furthermore, the
remaining sequencing constraints can be greatly simpli-
fied.

R. DONDO

 261

C. Valid inequalities: The use of information about the
structure of the convex hull of feasible solutions has
been so far one of the most useful approaches for solv-
ing combinatorial problems (Hoffmann, 2000) and will
be fully exploited to strength the new formulation in or-
der to tight the lower bounds of a branch and bound
procedure. Consequently, we aim to develop specific
inequalities necessary in the description of the convex
hull of the solution space of the SPPTWCC formulated
according Eqs. (9) to (15). If a problem is NP-hard, we
cannot expect to have a concise description of the con-
vex hull conv(S) of the feasible solutions. This does not
have necessarily a negative impact since what we need
is just a good description of the “area around” the opti-
mal solution (Hoffmann, 2000). As the number of valid
inequalities grows exponentially on the number of
nodes, we should focus only in the most attractive ine-
qualities. Those are the ones that eliminate the greatest
possible number of suboptimal configurations within a
given path and are easy to compute. Sometimes simple
exact rules are enough to provide a number of valid ine-
qualities and we identified the following types:
Valid inequalities based on two-vertexes: These are
constraints aimed at exploit information from every pair
of nodes i,j  I: i < j. Therefore its computation burden
is in the order O(n2). For a given couple of nodes i,j  I:
i < j, first let us assume that node j is a successor of
node i. Then, the only feasible path involving both
nodes to the depot is (i  j  p). In addition, if the ear-
liest possible returning time to the depot is larger than t’
= tv

max – minj k I: j k (stk + tjk), no visit to another node k
 I: k  j  i is possible. In such a case, if the cost of re-
turning via j (cij - j + cjp) is higher than the cost of re-
turning directly to the depot (cip), the partial path (i  j
 p) is sub-optimal and does not belong to the optimal
path. Consequently, the inequality (Yi + Yj)  1 becomes
valid. A “mirror inequality” is valid if the only feasible
path involving both nodes to the depot is (j  i  p)
and if the cost of returning via i (i.e. cji - i + cip) is
higher than the cost of returning directly to the depot
(cip). Finally, if i,j  I: i < j are compatible nodes, two
partial paths would be feasible; (i  j  p) and (j  i
 p). Consequently, both the direct way and the indi-
rect way to the depot are feasible. If both indirect ways
are more expensive than the direct ones, the inequality
(Yi + Yj)  1 becomes valid. These above assertions are
mathematically expressed by Eq. (26).

   

   

   
    















































jpipijiipijijj

ipjpjijjpjijii

jpipijiipijijj

ipjpjijjpjijii

cccttsttsta

cccttsttsta

iComjjiIji

cccttsttsta

iejjiIji

cccttsttsta

iSucjjiIji









'

'

)(,:,

'

)(Pr,:,

'

)(,:,

1 ji YY

(24)

where bk’ = (bk - stk - min ij: i ≠ j tij). Similar inequalities
can be designed considering the depot as the start node
for the partial paths involving nodes i and j. This lead to
the following additional valid inequalities:

   

   

   
    















































pijijpjijijpj

pjijipijijipi

pijijpjijijpj

pjijipijijipi

cccbtstt

cccbtstt

iComjjiIji

cccbtstt

iejjiIji

cccbtstt

iSucjjiIji









'

'

)(,:,

'

)(Pr,:,

'

)(,:,

1 ji YY

(25)

Valid inequalities based on three-vertexes: These ine-
qualities could be derived considering every triplet i, j, k
 I: i < j < k with a computational burden in the order
O(n3). In such a case, the information about time-
windows and about node-prices can be exploited.
Valid inequalities based on time-windows information:
Let us assume, without loss of generality, that the only
feasible partial path between nodes i, j and k is (i  j
 k). If, in addition, the minimum path time (i.e. ai + sti
+ tij + stj + tjk) for going to k via j is bigger than bk, the
three nodes cannot be simultaneously on the same path.
Then the inequality (Yi + Yj + Yk)  2, becomes binding.
This is just one case on which the nodes are pre-
ordered. For the two remaining cases (i.e. i,j,k  I: i < j
< k, j  Pre(i), k  Pre(j) and i,j,k  I: i < j < k, j 
Pre(i), k  Suc(i)), the same inequality is binding. They
are expressed as follows:

 

 

  






































kikijijj

ijijkjkk

kjkjijii

btsttsta

iSuckiejkjiIkji

btsttsta

jekiejkjiIkji

btsttsta

jSuckiSucjkjiIkji

)(),(Pr,:,,

)(Pr),(Pr,:,,

)(),(,:,,

2 kji YYY

(26)

Furthermore, if two of the three vertexes of a given trip-
let are compatible, two partial paths must be verified. If
both paths are suboptimal, the inequality (Yi + Yj + Yk) 
2 would be binding. I.e. if nodes k and j are compatible
and both are successors of node i, two minimum time
paths are to be verified. If (ai + sti + tij + stj + tjk) is
higher than bk and if (ai + sti + tik + stk + tkj) is larger
than bj, then inequality (Yi + Yj + Yk)  2 becomes valid.
The same inequality must be written if compatible
nodes k and j are both predecessors of node i and if both
three-node paths are infeasible. The whole statement is
expressed by the following equation:

Latin American Applied Research 42:257-265(2012)

 262

 
 

 
  








































ikikjkjj

ijijkjkk

jkjkikii

kjkjijii

btsttsta

btsttsta

jComkjekiejkjiIkji

btsttsta

btsttsta

jComkjSuckiSucjkjiIkji

)()(Pr),(Pr,:,,

)()(),(,:,,

2 kji YYY

(27)

Price-based inequalities: Value of prices i also can be
exploited for identifying suboptimal paths. I.e. let us
consider that the only feasible partial path between
nodes i, j, k  I is (i  j  k) and that, in addition, no
other node can be inserted between them, so j is an im-
mediate successor of node i and k is an immediate suc-
cessor of node j. Let us now compare the costs of both
feasible paths. If the direct path from i to k is cheaper
than the indirect path (i  j  k) because (cij - j + cjk)
> cik, then the three nodes must not be in the optimal
path. Therefore the inequality (Yi + Yj + Yk)  2 becomes
valid. For the two remaining cases (i.e. i,j,k  I: i < j <
k, j  Pre(i), k  Pre(j) and i,j,k  I: i < j < k, j 
Pre(i), k  Suc(i)), mirror inequalities are binding. They
are derived in the same way that time-window based
inequalities and are stated as follows:

 
 

 
 

 
  



























































jkikiji

kikijijj

kijijkj

ijijkjkk

ikjkjij

kjkjijii

ccc

btsttsta

iSuckiejkjiIkji

ccc

btsttsta

jekiejkjiIkji

ccc

btsttsta

jSuckiSucjkjiIkji







'

)(),(Pr,:,,

'

)(Pr),(Pr,:,,

'

)(),(,:,,

2 kji YYY

(28)

Furthermore, if two nodes are compatible, inequalities
like the ones of Eq. (27) would also be binding. They
are stated by Eq. (29).

   
   

   
    










































ikikjkjjijijkjkk

kikikjkkijijkj

jkjkikiikjkjijii

ijkjkikikjkjij

btsttstabtsttsta

ccccccjComk

jekiejkjiIkji

btsttstabtsttsta

ccccccjComk

jSuckiSucjkjiIkji





)(

)(Pr),(Pr,:,,

)(

)(),(,:,,

2 kji YYY

(29)

Inequalities based on immediate compatibility relation-
ships: Let us consider that node i  I belongs to the op-
timal path. In such a case, just one of all nodes j 
IPre(i) may be a predecessor of vertex i and just one
node k  ISuc(i) may be its successor. This raises the
following two valid inequalities:





)(Pr

1)(Pr)(Pr
ieIj

ji ieIYYieI (30.a)





)(

1)()(
iISucj

ji iISucYYiISuc Ii (30.b)

V. LIFTING THE INEQUALITIES
Lifting refers to extending valid inequalities from a low
dimensional polyhedron to polyhedrons that are valid in
higher dimensions. The concept of lifting has been in-
troduced by Gomory (1958). Padberg (1979) developed
a sequential lifting procedure for binary programming.
After those pioneering works, numerous lifting tech-
niques for a variety of constraint-structures have been
proposed (See e.g. Hosel and Aardal, 1996). We will
use some established results in order to lift the above
presented inequalities. First, let us consider the incom-
patibility relationship (12.b). As the node i is incom-
patible with any node j  Inc(i), if i belong to the opti-
mal path, no just the node j  Inc(i) can be inserted on
it. Any other node k  Inc(i): k # j incompatible with i
will also be forbidden. Then, the following will be a
stronger valid constraint:

)()(
)(

iIncYYiInc
iIncj

ji  


 Ii (31)

This constraint can replace the arrangement of incom-
patible-couple constraints related to node i that are
stated by Eq. (12.b). Eq. (31) is a stronger constraint be-
cause it extends inequality (12.b) from a {0, 1}2 space to
a {0, 1}Inc(i) dimension. It also reduces the total number
of constraints of the formulation.

The first constraint of Eq. (24) can be lifted by a
similar procedure and the following inequality can be
obtained:

 
j

ji YY Ii (32)

where Ξ = { i,j  I : j  Suc(i), i < j, ai + sti + tij + stj >
t', cij - πj + cjp > cip}. This means that if node i is in the
optimal path, not just one but all nodes j that fulfil the
condition stated by the first constraint of Eq. (24) must
be excluded from the tour. Now, this stronger inequality
can replace the former constraint. A mirror equation can
be written for the second constraint of Eq. (24). In the
same way, the last restriction can be lifted to obtain its
following enforced replacement:

 
j

ji YY Ii (33)

where Ψ = { i,j  I : j  Suc(i), i < j, ai + sti + tij + stj >
t', cij - πj + cjp > cip, aj + stj + tij + sti > t', cji - πi + cip >
cjp }. In addition, inequalities that consider the depot as
a tour start-point are lifted in the same way and enforced
versions of eqs. (25) can be straightforward derived and
written. Now, considering the first constraint of eq. (26),
we can see that if both nodes i and j are in the optimal
path, the least arrival time to node j moves from aj to
max[aj ; ai + sti + tij]. Consequently some nodes k that
are successors of of node j may become incompatible to
the couple (i, j) and the following will be a facet-
defining-constraint:

R. DONDO

 263

  





k
kji YYY

2

)(:, iSucjjiIji 

(34)

where Ω = { i,j,k  I: k  Suc(i), ai + sti + tij + stj + tkj
> bk}. This inequality states that successors of node j
that cannot be visited later than (ai + sti + tij + stj + tk)
are to be excluded from the optimal path just in case
nodes i and j belong to it. Conversely, if j is predecessor
of node i, the following mirror inequality would become
valid:

  





'

'
2

'

k
kji YYY

 jiiejIji ),(Pr:,

(35)

where Ω' = {k  I: k  Suc(i): aj + stj + tji + sti + tkj >
bk}.

VI. SOME NUMERICAL EXAMPLES AND
DISCUSSION

One of the most prominent vehicle routing problems
with side constraints is the VRPTW. This section illus-
trates the use of the new MILP formulation on a simple
branch-and-price algorithm aimed at finding optimal so-
lutions to VRPTW instances. Solomon (1987) bench-
mark VRPTW instances have attracted numerous re-
searchers to develop exact and heuristic solution proce-
dures and are commonly used as a test-bed for these
procedures. The collection of Solomon’s 56 problems
has been grouped into three categories: C, R and RC. C-
class problems feature clustered customers whose time
windows have been generated based on known solu-
tions. Locations in R-class problems were randomly
generated over a square while RC-class problems com-
prise a combination of clustered and randomly generat-
ed customers. The data set for every category comprises
100 nodes, a central depot, similar vehicle capacities but
different time-window distributions. Euclidean distanc-
es among customers and traveling times are numerically
identical. Furthermore, time windows are hard con-
straints, service times are independent of customer re-
quirements and the tour duration cannot exceed a max-
imum value tmax. The objective is the minimization of

the total distance. Smaller problems can be generated by
selecting the first 25 or 50 nodes of each instance.
Benchmark problems of each class are further classified
into types “1” and “2”, like C1 and C2. Type-1 prob-
lems have narrow time windows and small vehicle ca-
pacities while type-2 problems feature wider time win-
dows and larger vehicle capacities. In order to evaluate
the performance of our SPPTWCC formulation we first
solved all R1-type instances with just the first 25 nodes.
We selected this group because the different time-
windows lead to solutions involving a wide span of so-
lution-shapes. I.e. problem R101 have a solution with
numerous trips involving a few nodes per trip while
problems R104, R108 and R112 have solutions with
fewer tours and many nodes per tour.

In order to “translate” these benchmark problems to
the SPPTWCC, we included into the data a price vector
 = [1, 2, …25].

The vector was obtained by generating columns in a
column generation procedure until reaching the optimal
lower bound to the problem. Then, the price vector was
“frozen” into values obtained in such a way. Also inter-
node distances were rounded to the nearest first decimal
value. Price-values are reported in Table 1. To test the
proposed SPPTWCC model, different configurations of
enforced formulations were coded using ILOG OPL
Studio 3.7 and all R1-problems with 25 nodes were
solved in a 2.8 GHz 1.0 GB RAM Pentium IV PC.

We first compared three basic configurations. Con-
figuration 1 uses the new model after applying pre-
processing and domain reduction but no valid inequali-
ties at all. Configuration 2 adds the valid inequalities
and Configuration 3 replaces them by the “lifted” equa-
tions presented in section V. Table 2 summarizes objec-
tive function values of relaxed SPPTWCC. These re-
laxed problems were solved considering variables Yi and
Sij as continuous variables bounded by the interval [0,
1]. As prices reported on Table 1 were computed con-
sidering variables Yi and Sij as binary variables, the re
laxation of their integrality leaded to negative objective

Table 1: Optimal-price values on each Solomon R1-instances comprising the first 25 nodes
Node R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

5.3
29.7
34.8
20.5
16.0
6.6
41.8
17.8
34.6
19.0
49.9
8.5
7.1
27.4
44.5
38.4
18.1
31.6
12.2

5.3
9.5
9.2
21.6
8.5
6.6
7.2
51.5
33.1
26.2
39.5
2.7
7.1
19.9
43.2
45.9
10.7
31.6
10.9

6.6
8.6
19.7
35.7
12.6
20.9
13.2
38.2
35.2
29.6
27.0
2.70
8.5
31.5
30.6
4.4
12.1
6.4
5.1

11.6
7.9
24.4
24.9
8.0
0.6
11.9
31.0
34.4
14.9
28.4
2.7
13.2
22.8
35.3
9.0
16.8
6.4
12.1

8.7
31.5
38.8
20.5
18.6
14.1
15.6
34.1
29.3
25.5
37.2
8.5
7.1
36.8
23.6
11.5
18.1
18.3
9.7

1.0
7.7
16.7
15.2
2.6
16.1
19.7
29.3
41.5
3.2
34.5
3.8
13.4
25.1
30.2
24.8
18.6
20.0
18.7

14.7
9.7
21.8
20.4
6.8
17.6
10.1
33.3
22.4
20.6
21.9
4.1
11.9
30.6
21.1
12.4
19.2
4.6
14.2

7.3
10.4
19.2
34.5
12.3
3.6
11.8
32.2
22.3
14.9
16.1
7.8
9.3
27.4
22.6
9.6
12.2
6.3
16.1

5.3
10.4
39.5
17.0
19.4
13.8
15.6
21.6
18.8
29.6
27.6
3.8
7.1
27.3
17.6
15.0
28.4
12.4
3.3

1.0
10.4
37.2
8.9
11.7
6.6
15.6
18.1
27.7
9.8
26.1
8.3
7.1
20.2
20.7
24.2
15.6
25.2
10.6

8.1
10.3
25.8
16.6
4.1
21.3
9.0
22.2
22.6
18.1
36.2
8.9
7.1
32.2
23.4
9.6
19.4
13.7
6.0

5.3
10.8
15.9
16.0
15.1
8.3
6.6
22.1
33.1
14.9
26.1
14.6
7.1
22.4
19.6
12.4
11.7
14.1
9.5

Latin American Applied Research 42:257-265(2012)

 264

20
21
22
23
24
25

35.0
13.2
10.3
55.6
21.7
18.5

32.7
4.3
10.3
48.9
41.8
19.8

16.7
3.7
10.3
35.9
21.0
19.2

9.9
5.7
15.0
30.9
19.0
21.2

16.7
0.0
10.3
55.6
23.0
18.5

21.0
5.6
15.6
27.7
29.0
40.7

15.4
10.9
16.4
28.5
17.9
22.3

27.4
8.2
9.8
20.3
16.6
19.7

16.7
9.2
37.5
15.4
18.3
11.7

35.0
15.3
23.0
26.1
21.7
14.1

15.4
13.8
16.4
28.3
21.1
20.0

15.1
13.5
17.9
21.1
17.9
20.4

Total 617.1 547.1 454.7 417.0 530.5 465.4 424.4 397.3 441.7 452.2 429.7 395.1

function values. It can be observed here the effect of
valid inequalities in the relaxation of the problems. The
shrinkage of the objective function value shows that
these additional constraints might lead to smaller branch
and price trees and therefore to shorter CPU times. Nev-
ertheless, the relative reduction of the (negative) objec-
tive function value seems to depend on the problem
morphology. These claims were tested by solving the
R1-type VRPTW instances using the three different
configurations of the SPPTWCC as slave problems
within a basic branch and bound procedure (Barnhart et
al., 2000). Results are presented in Table 3. We can note
the following patterns:
 The effect of valid inequalities in problems con-

strained by tight time-windows (i.e. R101, R105
and R109) is null or slightly negative.

 The positive effect of valid inequalities is mostly
seen in problems constrained by weak time-
windows and can be considerable. See solution
times for the R104, R108 and R-112 problems.

 The global effect of valid inequalities is positive
because tightly constrained problems (where the ef-
fect of inequalities is slightly negative) are much
easier to solve than almost no-constrained problems
on which the accelerating effect of valid inequali-
ties can be substantially positive.

 The accelerating effect of lifted inequalities respect
to un-lifted valid inequalities is minor.

The Table 4 shows the number of columns generated
while using the MILP formulations of the SPPTWCC.
Interestingly, this number remains more or less constant

for the whole problem series and is dramatically smaller
than in algorithms that use conventional label setting
procedures as routes-generators (See Larsen, 2000). In
spite of this, CPU times are larger in our algorithms.
This is because label-setting algorithms generate many
columns per iteration. In spite of this initial disad-
vantage, our procedure shows the following properties:
 It is very flexible since it can handle almost any

structure of constraints while providing good per-
formances on known benchmark problems. Then,
this MILP model can be a cornerstone to model
more complex problems, like i.e. the pick-up and de-
livery problem and its realistic variations as multi-
commodity vehicle routing problems, routing prob-
lems with multiple time-windows, etc.

 It should lead to smaller branch-and-price trees, thus
erasing its disadvantages respect to label setting al-
gorithms in larger problems.
To test the last claim we solved the R1 series involv-

ing the first 50 customers. The Table 5 shows resolution
data for this problem set. Interestingly, if we compare
this data with data from problems involving just 25
nodes, we can’t detect an explosion of CPU times and
of generated columns.

The Table 6 shows resolution data en the R1-series
involving 100 nodes. Although the number of columns
grow with the problem size, this growing seems to be
more or less bounded. I.e. the average number of col-
umns is around 200 for the 25 node-series, 400 for the
50 nodes series and around 1000 for the 100 nodes se-
ries.

Table 2: Objective function values for different SPPTWCC formulations with relaxed assignment (Yi) and sequencing (Sij) desicion-variables
Config R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

1 -324.77 -305.47 -277.18 -266.30 -306.53 -289.07 -259.20 -263.08 -287.41 -319.48 -270.64 -272.35
2 -296.18 -268.27 -241.07 -223.99 -281.19 -265.04 -215.26 -211.36 -235.79 -243.80 -221.80 -206.78
3 -314.55 -279.01 -237.46 -213.70 -260.29 -251.99 -212.48 -203.81 -217.20 -235.45 -218.59 -206.78

Table 3: Resolution times (in seconds) and objective function values for the Solomon R1-instances comprising the first 25 nodes.
Config R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

CPU time
1 3.81 6.94 24.68 72.81 7.93 13.88 40.50 104.12 24.63 119.31 66.41 454.39
2 8.93 7.87 22.22 41.63 9.16 13.69 37.39 74.04 22.95 66.35 31.62 185.10
3 4.41 7.95 18.59 34.42 6.28 11.39 24.65 73.31 22.07 73.76 33.36 180.77

Integer objective function
 617.1 547.1 454.7 417.0 530.5 465.4 424.4 397.3 441.7 452.2 429.7 395.1

Table 4: Columns generated while solving R1-instances (25 nodes) with the three configurations.
Config R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

1 70 84 115 131 89 113 122 133 116 109 135 118
2 70 84 116 130 89 110 124 165 124 110 123 122
3 67 85 110 132 86 110 111 165 136 120 128 122

Table 5: Overview of solution parameters for the R1-Solomon examples with 50 nodes
 R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Columns 216 292 393 488 370 353 431 556 365 381 415 506
CPU (s) 19.5 56.9 238.6 423.5 61.5 107.2 378.9 935.0 221.1 359.4 419.7 809.2

Integer Obj. Func. 1044.7 909.0 778.1 625.5 902.9 793.1 716.9 623.0 801.5 697.0 715.0 634.3
Linear Obj. Func 1044.7 909.0 776.1 625.5 901.0 793.1 716.9 618.1 777.9 695.2 699.2 619.0

Proven Opt Yes Yes Yes Yes Yes Yes Yes No No Yes No No

R. DONDO

 265

Table 6: Overview of solution parameters for the R1-Solomon examples with 100 nodes
 R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Columns 668 787 920 1035 863 964 996 1134 960 951 1051 1008
CPU (s) 326.6 586.1 1820 4018 1454 4270 2362 4435 6971 2928 2716 3934

Integer Obj. Func. 1644.4 1468.1 1231.2 1033.5 1373.7 1261.0 1108.6 1008.2 1191.1 1090.6 1071.0 1026.4
Linear Obj. Func 1631.5 1468.1 1209.7 976.7 1348.3 1232.7 1061.9 939.1 1143.4 1064.1 1037.9 977.1

Proven Opt No Yes No No No No No No No No No No

VII. CONCLUSIONS
In this work, we developed a new MILP formulation for
the SPPTWCC that is useful in the context of column
generation methods designed to solve vehicle routing
problems. It is flexible since it can handle almost any
structure of constraints while providing good perfor-
mances on known benchmark problems. Thus, this
MILP model can be used as a cornerstone to model
more complex and more realistic problems. We have al-
so developed new valid inequalities tailored for such a
model and introduced its “lifted” equivalences. The nu-
merical research demonstrates that these inequalities are
useful in substantially reducing CPU times.

We think that those developments constitute a start-
ing point for the development of slave route-generator
problems that can model a wide arrange of realistic and
complex problems. We can see a remarkably constant
level of generated columns on problems of a given size
but with different solution-morphologies. This obvious-
ly means that columns of more complex problems de-
mand higher generation times. Nevertheless, CPU times
used to solve small problems with our formulation are
higher than CPU times reported in the literature for al-
gorithms based on label-setting procedures. This is be-
cause these procedures are able to generate many col-
umns per iteration. Nevertheless, optimality for these
columns maybe hard to prove. It is important to high-
light that the objective of the proposal is not to compete
with algorithms based on label setting procedures but to
complement them with this alternative model. It seems
that a column generation algorithm involving calling to
both types of “routes generators” seems to be the most
efficient option. We should first use the label-setting al-
gorithm and then, whenever the branching mechanism
demands a few but hard to find columns we should
switch to the MILP formulation. This, of course, is an
issue for future research. Another area of continuing re-
search should include the design of branching methods
tailored to exploit the structure of the new formulation.
It seems that branching on assignment variables Yi is an
effective method to keep the search tree bounded. The
continuing development of valid inequalities also de-
serves additional work.

REFERENCES
Barnhart, C., E. Johnson, G. Nemhauser, M.

Savelsbergh and P. Vance, “Branch and Price.
Column Generation for Solving Huge Integer Pro-
grams,” Op. Res., 48, 316-329 (2000).

Cordeau, J.., G. Desaulniers, J. Desrosiers, M. Solomon,
and F. Soumis, “VRP with time windows,” The
Vehicle Routing Problem, P. Toth, D. Vigo, eds.
SIAM, Philadelphia, PA., 7, 155-194 (2002).

Desaulniers, G., J. Desrosiers, I. Ioachim, M. Solomon,
F. Soumis and D. Villeneuve, “A unified frame-
work for deterministic time constrained vehicle
routing and crew scheduling problems,” Fleet
Management and Logistics, T. Crainic, G. Laporte,
eds. Kluwer Academic Publisher, Boston, MA., 3,
57-93 (1998).

Desrochers, M., J. Desrosiers and M. Solomon, “A new
optimization algorithm for the vehicle routing
problem with time windows,” Op. Res., 40, 342-
354 (1992).

Gomory, R., “Outline of an algorithm for integer solu-
tions to linear programs,” Bull. AMS, 64, 275–278
(1958).

Hoffmann, K., “Combinatorial Optimization: History
and Future Challenges,” J of Appl. and Comp.
Math., 124, 341-360 (2000).

Houck, D, J. Picard, M. Queyranne and R. Vemuganti,
“The travelling salesman problem as a constrained
shortest path problem: theory and computational
experience,” Op. Res., 17, 93-109 (1980).

Irnich, S and G. Desaulniers, “Shortest path problems
with resource constraints,” Column Generation, In
G. Desaulniers, J. Desrosiers and M. Solomon, edi-
tors. Chapter 2, 33-65 (2005).

Irnich, S and D. Villenueve, “The Shortest-Path Prob-
lem with Resource Constraints and k-Cycle Elimi-
nation for k > 3. Improving a branch and price al-
gorithm for the VRPTW. INFORMS,” J. of Com-
puting, 18, 391-406 (2006).

Larsen, J., The Dynamic Vehicle Routing Problem,
Ph.D. Thesis. Technical University of Denmark
(2001).

Padberg, M., “A note on 0-1 programming,” Opera-
tions. Research, 23, 833-877 (1979).

Ropke, S and J. Cordeau, “Branch-and-Cut-and-Price
for the Pickup and Delivery Problem with Time
Windows,” Transp. Sci., 43, 267-286 (2009).

Solomon, M., “Algorithms for the vehicle routing and
scheduling with time window constraints,” Op.
Res., 15, 254–265 (1987).

van Hoesel, C.P.M. and K.I. Aardal, “Polyhedral tech-
niques in combinatorial optimization I: theory,”
Statistica neerlandica: Orgaan van de Vereniging
voor Statistiek, 50, 3-26 (1996).

Received: June 27, 2011
Accepted: October 24, 2011
Recommended by subject editor: Pedro de Alcântara Pessôa

	42-3-01
	42-3-02
	42-3-07
	42-3-08
	42-3-14

