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Abstract The Shortest-path problem with time-

windows and capacity constraints (SPPTWCC) is a 
problem used for solving vehicle-routing and crew-
scheduling applications. The SPPTWCC occurs as a 
sub-problem used to implicitly generate the set of all 
feasible routes and schedules in the column-
generation formulation of the vehicle routing prob-
lem with time windows (VRPTW) and its variations. 
The problem is NP-hard in the strong sense. Classi-
cal solution approaches are based on a non-
elementary shortest-path problem with resource 
constraints using dynamic-programming labeling al-
gorithms. In this way, numerous label-setting algo-
rithms have been developed. Contrarily to this ap-
proach and with the aim to obtain elemental and op-
timal solutions, we propose a new mixed integer-
linear formulation to the SPPTWCC. Some valid in-
equalities that can be used to strengthen the linear 
relaxation of the SPPTWCC are also proposed. Nu-
merical experiments on some VRPTW instances tak-
en from Solomon's benchmark problems show that 
(near) optimal solutions are easily obtained in spite 
of the considerable problem size. Also the number of 
generated columns is kept at a very low level. 

Keywords shortest path problem, MILP formu-
lation, column generation, vehicle routing. 

I. INTRODUCTION 
The shortest-path problem with time-windows and ca-
pacity constraints is a problem widely used for formu-
lating vehicle-routing and crew-scheduling applications 
(Desaulniers et al., 1998). The SPPTWCC consists of 
finding the shortest path from a source-node to some 
nodes of a network (while fulfilling timing and capacity 
constraints) that ends in a sink node. The term “shortest 
path” should be carefully interpreted: given costs asso-
ciated to arcs and prices associated to the nodes, the aim 
is to find the least-cost path from the source node to the 
sink node. The SPPTWCC occurs as a sub-problem 
used to implicitly generate the set of all feasible routes 
in the column-generation formulation of the vehicle 
routing problem with time windows (VRPTW) and its 
variants (Cordeau et al., 2002). It is NP-hard in the 
strong sense. In the VRPTW, the source and sink nodes 
are usually located in the same place. This place is 
commonly named “the depot”. For n-depot routing 
problems, n source/sink pairs placed in the same loca-
tion are usually defined. We may relax the problem to 
consider variants with source and sink nodes placed on 

different locations. This work deals just with the single-
depot case but the more general cases are straight for-
ward. 

The SPPTWCC is also a problem with an economic 
meaning. I.e. given a set of profits associated to the 
nodes we aim to choose, at a non-zero cost, a subset of 
nodes that maximizes our net profit.  

Classical solution approaches are based on the non-
elementary shortest-path problem with resource con-
straints, using pseudo-polynomial dynamic program-
ming labeling algorithms. Very refined and complex al-
gorithms of this type have been developed. (See e.g. 
Houck et al., 1980; Irnich and Desaulniers, 2005 and 
Irnich and Villenueve, 2006). These algorithms are very 
effective in generating, in addition to the best route, 
many solutions per iteration. On the contrary, our pur-
pose is just to obtain the optimal solution to the 
SPPTWCC. Consequently, we propose a new mixed in-
teger-linear formulation (MILP) to the problem. 

This work is organized as follows: Section 2 de-
scribes the problem and presents its conventional MILP 
formulation. Section 3 presents a novel MILP formula-
tion based on global precedence relationships. Ad-
vantages and weaknesses of this model are also dis-
cussed in this section. In Section 4 several pre-
processing and polyhedral techniques are applied to the 
new formulation in order to improve its numerical 
resolubility. Numerical examples that arise from the 
well known Solomon benchmark collection are present-
ed and discussed in Section 5. Finally, the conclusions 
are outlined in section 6. 

II. PROBLEM DEFINITION AND ITS USUAL 
MATHEMATICAL MODEL 

Consider a route-network represented by an undirected 
graph G{I  p, A } with I = {i1, i2, ..., in} denoting the 
set of nodes or customers and p representing a source 
/sink node called “the depot”. Nodes and the depot are 
connected by a set of arcs A = {(i, j) / i,j  I  p}. 
Known load and price vectors L = [l1 , l2, …, ln] and  = 
[1, 2, …n] are associated to the customer set I. Loads li 
must be collected within a time window [ai, bi] on each 
node i  I. The parameters ai stands for the earliest pos-
sible start-time of the service and the parameters bi 
states the latest possible start-time of the service at the 
node. In addition, travel-costs C = {cij} and travel times 
 = {tij} are given data for any route segment (i,j)  A. 
Moreover, the service time on node i is denoted sti. For 
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each cargo li collected node i  I, an associated price i 
is accumulated. It is assumed that the triangle inequality 
is satisfied by the travel costs and travel times, i.e. cik +  

ckj    cij  and tik +  tkj    tij  . The solution to the SPPTWCC 
problem must: (1) Maximize the net profit collected 
from the selected subset of nodes  I opt I. This profit is 
defined as the sum of collected prices minus the cumu-
lated cost incurred by traveling arcs to pick them. (2) 
The resulting route must start and end on the depot p. 
(3) The selected nodes must be visited once, so an ele-
mental path is designed. (4) The total collected load 
must never exceed a given capacity q. (5)The time-
length used to collect loads and premiums must be 
shorter than the maximum allowed working time tmax. 
(6)The service at every customer site i must start within 
the specified time window [ai, bi]. This problem is usu-
ally formulated as follows: 
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while Eq. (1) states the objective function above men-
tioned, Eq. (2) states a capacity constraint. Constraints 
(3), (4) and (5) are flow constraints resulting in a path 
from the depot p to the subset of chosen nodes and back 
to the depot. Constraints (6) and (7) are timing con-
straints and constraint (8) limits the routing time to a 
maximum value tmax. The binary variable xij indicates if 
arc (i,j)  A is used (xij = 1) or not (xij = 0). The parame-
ter γij is the reduced cost (cij - i) of using the arc (i,j). 
While cij is a non-negative number, γij can be any real 
value. As the SPPTWCC is NP-hard, no algorithm with 
a worst- case running-time bounded by a polynomial in 
the size of the problem is known. To optimally solve 
this problem, we have to use an enumerative algorithm 
such as branch and bound with a worst-case solution-
time that is exponential in the size of the input. Note 
that the formulation given by Eqs. (1) to (8) is, in prac-
tice, unsolvable because of the high number of binary 
variables xij. Furthermore, the weak linear relaxations of 
constraints (6) lead to enormous search trees. Therefore, 
in the context of column generation algorithms, the 
most common solution approach to the SPPTWCC is a 
dynamic-programming label-setting  algorithm (See 
Desrochers et al., 1992). While searching for the opti-
mal route, these procedures generate many non-optimal 
but useful routes. Very refined and complex algorithms 

of this type have been developed (Houck et al., 1980; 
Irnich and Desaulniers, 2005; and Irnich and Villenueve 
2006). These methods often lead to problems with thou-
sands of columns that are very hard to solve. Ropke and 
Cordeau (2009) claim that although  the SPPTWCC can 
initially be solved with heuristic algorithms, whenever 
the heuristic can no longer produce columns with nega-
tive reduced costs, it is necessary to switch to exact 
methods and always the last pricing problem must be 
solved to guaranteed optimality in order to prove that 
the lowest bound is valid. Consequently, optimizing 
formulations for the SPPTWCC are of crucial im-
portance to prove the optimality of a given solution. 
This constitutes the main motivation for developing the 
formulation to the SPPTWCC to be next presented. 

III. A REFORMULATION TO THE SPPTWCC 
The computational hardness of most combinatorial 
problems has inspired researchers to develop good for-
mulations that are expected to reduce the size of the 
enumeration tree and the computation times of these 
problems. In such a way, we can reformulate the 
SPPTWCC as follows: 
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The objective function (9) is expressed as minimization 
of the difference between the overall travelled distance 
(CV) and the total quantity of collected prices ( iI 

iYi). Eq. (10) is a capacity constraint equivalent to eq. 
(2). Eq. (11) is like eq. (3) but states flow constraints us-
ing continuous variables. It computes the least travelling 
costs and times (Ci and Ti) from the depot p to a given 
node i. Eq. (12) combines and reformulates the informa-
tion from constraints (4) and (6) in order to sequence 
nodes. In this way, let us assume that nodes i and j are 
both in the optimal path (Yi = Yj = 1). Then, the relative 
ordering of nodes i and j becomes determined by the se-
quencing variable Sij. In such a case, node j can be a di-
rect/indirect predecessor of node i or viceversa. If node i 
is visited before j (Sij = 1), the travel cost from node i to 
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node j (Cj) must always be larger than Ci by at least cij. 
Furthermore, the arrival time at node j (Tj) should be 
larger than Ti by at least the sum of the traveling time tij 
and the service time (sti) at the node i. In case node j is 
visited earlier (Sij = 0) , the reverse statements hold-on. 
Eqs. (13) states that the overall traveling cost (CV) must 
always be larger than the traveling expenses from the 
depot to any node i (Ci) along the tour by at least the 
amount cip. Also, the total time (TV) required to com-
plete the tour is found by adding the sum of both the 
service time sti at node i and the travel time tip  along the 
edge (i,p) to the initial service time at the node last vis-
ited i. Since the node last visited is not known before-
hand, the eq. (13) must be written for every node i  I. 
Eqs. (14) and (15) are time-windows and maximum 
routing time constraints. This formulation differs from 
the usual formulation to the SPPTWCC, given by Eqs. 
(1)-(8) in the following main issues: 
 It uses a continuous representation for both the time 

domain (variables TV and Ti for all i  I) and the 
cost domain (variables CV and Ci for all i  I).  

 The new formulation handles node-visit and node-
sequencing decisions through different sets of binary 
variables. The variable Yi indicates if node i  I be-
longs to the optimal path (Yi = 1) or not (Yi = 0) 
while the variable Sij set the generalized precedence 
relationship between nodes (i, j)  I: i < j if both are 
in the optimal path (Yi + Yj = 1). Constraints (12) 
become redundant whenever nodes i and/or j are not 
in the optimal path (Yi + Yj  1). In such a case, the 
constraint will state that Ci, Ti, Cj and Tj are all larger 
than a large negative number. 

 The reformulation uses the concept of generalized 
predecessors for sequencing variables. Variable Sij 
indicates that node i is visited before (Sij = 1) or after 
(Sij = 0) node j just in case both nodes belong to the 
optimal tour. This variable indicates both direct and 
indirect precedence relationships. I.e. if i is a direct 
predecessor of j, the term (ci   ci + cij) will be satis-
fied as equality. If i is a indirect predecessor of j, the 
inequality sign “>” will become active.  

Our formulation is aimed at limiting one flaw of the 
original one; the high number of 0-1 variables. More 
precisely we have 

O[I (I-1)] binary variables; 
O[I] continuous variables; 

O[3 + 3I + I (I-1)] constraints 
on the conventional formulation and 

O[I + ½I (I-1)] binary variables; 
O[2I + 2] continuous variables; 

O[6I + 4I (I-1) + 2] constraints 
on the new formulation. So, a considerable saving of 0-
1 variables is achieved. These can be reduced to almost 
a half (if I is large) respect to the conventional formula-
tion, at the cost of increasing continuous variables and 
constraints. Consequently, we have a formulation with 
fewer binary variables and more constraints. This 
should be favourable from a resolution point of view 

and should lead to smaller branch and bound trees.  Alt-
hough the new model uses fewer binary variables, great-
ly exploits "big-M" type constraints. Thus, it is expected 
to have a loose continuous relaxation. It is well known 
that big-M constraints can be difficult for branch  and  
bound solvers since they generate un-tight lower bounds 
that are crucial for the efficiency of the solver. In gen-
eral, the larger M in the big-M constraint, the less tight 
the formulation. Then, the big-M value should be substi-
tuted by an upper bound in the terms that activates. I.e, 
in the equation:  

 iTijii YMtstTTV  1  

the parameter MT should be replaced by an upper bound 
on the term (Ti + sti + tij). In this case the bound is (bi + 
sti + tij). In this way, “customized” and as small as pos-
sible big-M parameters should be introduced into each 
constraint. This should lead to a higher tightness of con-
straints and therefore, the problem might be faster 
solved. Nevertheless, even with this “strongest”  version 
of inequalities, they are very unfavourable for linear re-
laxations. Consequently, we have achieved one objec-
tive (to reduce the number of 0-1 variables) but we are 
still unable to provide tight lower bounds to linear re-
laxations. Since the number of constraints with big-M 
structure are higher than in the new formulation, the 
original formulation (Eqs. 1-8) presents even worse 
bounds. Ways to improve the linear relaxations on the 
new formulation are presented in the next section. 

IV. PRE-PROCESSING AND POLYHEDRAL 
TECHNIQUES IN THE NEW MODEL 

The size and complexity of solved integer problems can 
be increased when the polyhedral theory is applied. The 
underlying idea of polyhedral combinatronics is to re-
place the constraints-set of the integer-programming 
problem by an alternative convexification of the feasible 
points and rays of the convex hull conv(S) of the prob-
lem (von Hoesel and Aardal, 1996). Then, if we can list 
the whole set of linear inequalities that defines conv(S) 
we can solve the integer problem by linear program-
ming. Nevertheless, for most integer problems the 
minimal number of inequalities necessary to describe 
the polyhedron is exponential in the number of vari-
ables. Thus, it is unrealistic to search for the complete 
set of inequalities. In addition, if generated within a 
branch-and-bound tree they can be not valid throughout 
the entire tree since cuts are generated assuming that 
certain values are fixed. Therefore, we are interested in 
a set of constraints conv(S) as small as possible and with 
no a-priory value-assumptions. Then, one should con-
sider inequalities that define a facet of conv(S).  They 
are the “best possible” in the sense that they cannot be 
“stronger” without losing some feasible mixed-integer 
solutions of the original problem. Frequently only a par-
tial set of valid inequalities “located” in the neighbour-
hood of the optimal solution is useful to reduce solution 
times (Hoffmann, 2000). It is worth noting that, to make 
polyhedral methods work well, one important issue is 
pre-processing. Important elements of pre-processing 
are to reduce the size of the initial formulation and to 
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reduce the range of constraint coefficients to make in-
stances numerically more efficient. 
A. Pre-processing: In pre-processing, the formulation 
is tightened before the actual optimization. This is done 
by fixing some variables or by reducing the interval of 
values a variable can take. This leads to a more compact 
solution space and consequently to shorter solution 
times. In this way, to pre-set some sequencing con-
straints, we define the following useful sets: 

Nodes-compatibility relationship sets:  
Set of nodes compatible with i  I : A node j is said to 
be compatible with a reference node i if can be visited 
either before or after i. This compatibility condition is 
stated by the following set: 

    iijjjjijii btstabtstaIjiCom   :)(

Ii

(16)

Set of predecessors of node i  I : A pair of nodes (i,j) 
is said to be pre-ordered  if they must be visited in a cer-
tain pre-determined order when time-window con-
straints are satisfied. For instance, node j is said to be a 
predecessor of node i if j must be visited before node i. 
This condition is defined by the following set: 

    iijjjjijii btstabtstaIjie   :)(Pr

Ii
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Set of successors of node i  I : Node j is said to be a 
successor of node i if j must be visited after node i. Suc-
cessors of node i are specified by the following set: 

    iijjjjijii btstabtstaIjiSuc   :)(
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Set of nodes incompatibles with i  I : Nodes (i,j) that 
cannot be assigned to the same path are called incom-
patible.  The incompatibility condition for nodes j  i is 
stated by the following set: 

    iijjjjijii btstabtstaIjiInc   :)(
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Stronger compatibility relationships can be defined if 
we use the concept of “immediacy” for defining the fol-
lowing more restrictive sets: 
Set of immediate predecessors of node i  I : A node j is 
said to be an immediate predecessor of node i if it is a 
predecessor of such a node and in addition, no other 
node k  I: k  j can be inserted  in a path from i toward 
j. In such a case, the only feasible path connecting i and 
j is the arc (i, j)  N. Immediate precedence relation-
ships are stated by the following set: 

)}(min:)(Pr{)(Pr ikkIkiijjj tstbtstaiejieI  
 

Ii
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Immediate successors are defined in the same way: 
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Ii
(21)

Immediately compatible nodes are nodes i and j  I that 
are compatible and, in addition, no a third node k can be 
inserted between them, no matter its relative ordering. 
Immediate compatibility is defined by the following set: 

)}(min)(min

:)({)(

ijkIkjijiiikkIk

iijjj

tstbtstatst

btstaiComjiICom







 
(22)

Ii
B. Domain reduction: The narrowing of the range of a 
given variable is known as domain-reduction. The re-
duction of the domain of a continuous variable refines 
the information known about this variable. In the con-
text of the VRPTW and the SPPTWCC, as the triangle 
inequality holds, the earliest arrival time to a customer 
can be  strengthened by the time used to arrive straight 
from the depot and the latest arrival time can be  
strengthened by driving the fastest way to the depot. So, 
the customer i time-window can initially be strength-
ened from [ai, bi] to [max (ap + tpi,  ai), min (bp – sti – tip, 
bi)]. A further reduction can be achieved, in the context 
of the formulation (9)-(15), by using two of the 
Desrochers rules (Desrochers et al., 1992). Considering 
that node i is assigned to the optimal tour, the beginning 
of the time windows for all successor  j  Suc(i) of cus-
tomer i, and the closing of time windows for all prede-
cessors j  Pre(i) of node i, can be strengthened as fol-
lows: 

Ii
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(23.a) 

iijij sttbbiej  :)(Pr

  
iijij sttbb 
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These rules are useful in case a node is assigned to a 
partial tour before the actual optimisation as i.e. in not-
root nodes of a branch and bound tree for the VRPTW.  
Rules (23) not only narrow time windows. They also al-
low to move some nodes from sets Com(i) to Pre(i)  
Suc(i) and from Pre(i)  Suc(i) to Inc(i). So, the re-use 
of narrowing rules and the re-definition of compatibility 
sets until no further changes are achieved lead to easier 
problems. In such a way, the sequencing constraints 
(12) now can be split as follows: 
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So, the use of narrowing rules and precedence relation-
ships can lead to a considerable saving of sequencing 
variables and sequencing constraints. Furthermore, the 
remaining sequencing constraints can be greatly simpli-
fied.  
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C. Valid inequalities: The use of information about the 
structure of the convex hull of feasible solutions has 
been so far one of the most useful approaches for solv-
ing combinatorial problems (Hoffmann, 2000) and will 
be fully exploited to strength the new formulation in or-
der to tight the lower bounds of a branch and bound 
procedure. Consequently, we aim to develop specific 
inequalities necessary in the description of the convex 
hull of the solution space of the SPPTWCC formulated 
according Eqs. (9) to (15). If a problem is NP-hard, we 
cannot expect to have a concise description of the con-
vex hull conv(S) of the feasible solutions. This does not 
have necessarily a negative impact since what we need 
is just a good description of the “area around” the opti-
mal solution (Hoffmann, 2000). As the number of valid 
inequalities grows exponentially on the number of 
nodes, we should focus only in the most attractive ine-
qualities. Those are the ones that eliminate the greatest 
possible number of suboptimal configurations within a 
given path and are easy to compute. Sometimes simple 
exact rules are enough to provide a number of valid ine-
qualities and we identified the following types: 
Valid inequalities based on two-vertexes: These are 
constraints aimed at exploit information from every pair 
of nodes i,j  I: i < j. Therefore its computation burden 
is in the order O(n2). For a given couple of nodes i,j  I: 
i < j, first let us assume that node j is a successor of 
node i. Then, the only feasible path involving both 
nodes to the depot is (i  j  p). In addition, if the ear-
liest possible returning time to the depot is larger than t’ 
= tv

max – minj k I: j k (stk + tjk ), no visit to another node k 
 I: k  j  i is possible. In such a case, if the cost of re-
turning via j (cij - j + cjp) is higher than the cost of re-
turning directly to the depot (cip), the partial path (i  j 
 p) is sub-optimal and does not belong to the optimal 
path. Consequently, the inequality (Yi + Yj)  1 becomes 
valid. A “mirror inequality” is valid if the only feasible 
path involving both nodes to the depot is (j  i  p) 
and if the cost of returning via i (i.e. cji - i + cip) is 
higher than the cost of returning directly to the depot 
(cip). Finally, if i,j  I: i < j are compatible nodes, two 
partial paths would be feasible; (i  j  p) and (j  i 
 p). Consequently, both the direct way and the indi-
rect way to the depot are feasible. If both indirect ways 
are more expensive than the direct ones, the inequality 
(Yi + Yj)  1 becomes valid. These above assertions are 
mathematically expressed by Eq. (26). 
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where bk’ = (bk - stk - min ij: i ≠ j tij). Similar inequalities 
can be designed considering the depot as the start node 
for the partial paths involving nodes i and j. This lead to 
the following additional valid inequalities: 
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Valid inequalities based on three-vertexes: These ine-
qualities could be derived considering every triplet i, j, k 
 I: i  < j < k with a computational burden in the order 
O(n3). In such a case, the information about time-
windows and about node-prices can be exploited. 
Valid inequalities based on time-windows information: 
Let us assume, without loss of generality, that the only 
feasible partial path between nodes  i, j and k is (i  j 
 k). If, in addition, the minimum path time (i.e. ai + sti 
+ tij + stj + tjk) for going to k via j is bigger than bk, the 
three nodes cannot be simultaneously on the same path. 
Then the inequality (Yi + Yj + Yk)  2, becomes binding. 
This is just one case on which the nodes are pre-
ordered. For the two remaining cases (i.e. i,j,k  I: i < j 
< k, j  Pre(i), k  Pre(j) and i,j,k  I: i < j < k, j  
Pre(i), k  Suc(i)), the same inequality is binding. They 
are expressed as follows:  
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Furthermore, if two of the three vertexes of a given trip-
let are compatible, two partial paths must be verified. If 
both paths are suboptimal, the inequality (Yi + Yj + Yk)  
2 would be  binding. I.e. if nodes k and j are compatible 
and both are successors of node i, two minimum time 
paths are to be verified. If (ai + sti + tij + stj + tjk) is 
higher than bk and if (ai + sti + tik + stk + tkj) is larger 
than bj, then inequality (Yi + Yj + Yk)  2 becomes valid. 
The same inequality must be written if compatible 
nodes k and j are both predecessors of node i and if both 
three-node paths are infeasible. The whole statement is 
expressed by the following equation: 
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Price-based inequalities: Value of prices i  also can be 
exploited for identifying suboptimal paths. I.e. let us 
consider that the only feasible partial path between 
nodes i, j, k  I is (i  j  k) and that, in addition, no 
other node can be inserted between them, so j is an im-
mediate successor of node i and k is an immediate suc-
cessor of node j. Let us now compare the costs of both 
feasible paths. If the direct path from i to k is cheaper 
than the indirect path (i  j  k) because (cij - j + cjk) 
> cik, then the three nodes must not be in the optimal 
path. Therefore the inequality (Yi + Yj + Yk)  2 becomes 
valid. For the two remaining cases (i.e. i,j,k  I: i < j < 
k, j  Pre(i), k  Pre(j) and   i,j,k  I: i < j < k, j  
Pre(i), k  Suc(i)), mirror inequalities are binding. They 
are derived in the same way that time-window based 
inequalities and are stated as follows: 
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Furthermore, if two nodes are compatible, inequalities 
like the ones of Eq. (27) would also be binding. They 
are stated by Eq. (29). 
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Inequalities based on immediate compatibility relation-
ships: Let us consider that node i  I belongs to the op-
timal path. In such a case, just one of all nodes j  
IPre(i) may be a predecessor of vertex i and just one 
node k  ISuc(i) may be its successor. This raises the 
following two valid inequalities: 
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V. LIFTING THE INEQUALITIES 
Lifting refers to extending valid inequalities from a low 
dimensional polyhedron to polyhedrons that are valid in 
higher dimensions. The concept of lifting has been in-
troduced by Gomory (1958). Padberg (1979) developed 
a sequential lifting procedure for binary programming. 
After those pioneering works, numerous lifting tech-
niques for a variety of constraint-structures have been 
proposed (See e.g. Hosel and Aardal, 1996). We will 
use some established results in order to lift the above 
presented inequalities. First, let us consider the incom-
patibility relationship (12.b). As the node i is incom-
patible with any node j  Inc(i), if i belong to the opti-
mal path, no just the node j  Inc(i) can be inserted on 
it. Any other node k  Inc(i): k # j incompatible with i 
will also be forbidden. Then, the following will be a 
stronger valid constraint: 

)()(
)(

iIncYYiInc
iIncj

ji  


             Ii  (31)

This constraint can replace the arrangement of incom-
patible-couple constraints related to node i that are 
stated by Eq. (12.b). Eq. (31) is a stronger constraint be-
cause it extends inequality (12.b) from a {0, 1}2 space to 
a {0, 1}Inc(i) dimension. It also reduces the total number 
of constraints of the formulation. 

The first constraint of Eq. (24) can be lifted by a 
similar procedure and the following inequality can be 
obtained: 

 
j

ji YY  Ii  (32)

where Ξ = { i,j  I : j  Suc(i), i < j, ai + sti + tij + stj > 
t', cij - πj + cjp > cip}. This means that if node i is in the 
optimal path, not just one but all nodes j that fulfil the 
condition stated by the first constraint of Eq. (24) must 
be excluded from the tour. Now, this stronger inequality 
can replace the former constraint. A mirror equation can 
be written for the second constraint of Eq. (24). In the 
same way, the last restriction can be lifted to obtain its 
following enforced replacement: 

 
j

ji YY                           Ii  (33)

where Ψ = { i,j  I : j  Suc(i), i < j, ai + sti + tij + stj > 
t', cij - πj + cjp > cip, aj + stj + tij + sti > t', cji - πi + cip > 
cjp }. In addition, inequalities that consider the depot as 
a tour start-point are lifted in the same way and enforced 
versions of eqs. (25) can be straightforward derived and 
written. Now, considering the first constraint of eq. (26), 
we can see that if both nodes i and j are in the optimal 
path, the least arrival time to node j moves from aj to 
max[aj ; ai + sti + tij]. Consequently some nodes k that 
are successors of of node j may become incompatible to 
the couple (i, j) and the following will be a facet-
defining-constraint: 
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where Ω = { i,j,k  I: k  Suc(i), ai + sti + tij + stj + tkj 
> bk}. This inequality states that successors of node j 
that cannot be visited later than (ai + sti + tij + stj + tk) 
are to be excluded from the optimal path just in case 
nodes i and j belong to it. Conversely, if j is predecessor 
of node i, the following mirror inequality would become 
valid: 
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where Ω' = {k  I: k  Suc(i): aj + stj + tji + sti + tkj > 
bk}. 

VI. SOME NUMERICAL EXAMPLES AND 
DISCUSSION 

One of the most prominent vehicle routing problems 
with side constraints is the VRPTW. This section illus-
trates the use of the new MILP formulation on a simple 
branch-and-price algorithm aimed at finding optimal so-
lutions to VRPTW instances. Solomon (1987) bench-
mark VRPTW instances have attracted numerous re-
searchers to develop exact and heuristic solution proce-
dures and are commonly used as a test-bed for these 
procedures. The collection of Solomon’s 56 problems 
has been grouped into three categories: C, R and RC. C-
class problems feature clustered customers whose time 
windows have been generated based on known solu-
tions. Locations in R-class problems were randomly 
generated over a square while RC-class problems com-
prise a combination of clustered and randomly generat-
ed customers. The data set for every category comprises 
100 nodes, a central depot, similar vehicle capacities but 
different time-window distributions. Euclidean distanc-
es among customers and traveling times are numerically 
identical. Furthermore, time windows are hard con-
straints, service times are independent of customer re-
quirements and the tour duration cannot exceed a max-
imum value tmax. The objective is the minimization of 

the total distance. Smaller problems can be generated by 
selecting the first 25 or 50 nodes of each instance. 
Benchmark problems of each class are further classified 
into types “1” and “2”, like C1 and C2. Type-1 prob-
lems have narrow time windows and small vehicle ca-
pacities while type-2 problems feature wider time win-
dows and larger vehicle capacities. In order to evaluate 
the performance of our SPPTWCC formulation we first 
solved all R1-type instances with just the first 25 nodes. 
We selected this group because the different time-
windows lead to solutions involving a wide span of so-
lution-shapes. I.e. problem R101 have a solution with 
numerous trips involving a few nodes per trip while 
problems R104, R108 and R112 have solutions with 
fewer tours and many nodes per tour.  

In order to “translate” these benchmark problems to 
the SPPTWCC, we included into the data a price vector 
 = [1, 2, …25].  

The vector was obtained by generating columns in a 
column generation procedure until reaching the optimal 
lower bound to the problem. Then, the price vector was 
“frozen” into values obtained in such a way. Also inter-
node distances were rounded to the nearest first decimal 
value. Price-values are reported in Table 1. To test the 
proposed SPPTWCC model, different configurations of 
enforced formulations were coded using ILOG OPL 
Studio 3.7 and all R1-problems with 25 nodes were 
solved in a 2.8 GHz 1.0 GB RAM Pentium IV PC.  

We first compared three basic configurations. Con-
figuration 1 uses the new model after applying pre-
processing and domain reduction but no valid inequali-
ties at all. Configuration 2 adds the valid inequalities 
and Configuration 3 replaces them by the “lifted” equa-
tions presented in section V. Table 2 summarizes objec-
tive function values of relaxed SPPTWCC. These re-
laxed problems were solved considering variables Yi and 
Sij as continuous variables bounded by the interval [0, 
1]. As prices reported on Table 1 were computed con-
sidering variables Yi and Sij as binary variables, the re 
laxation of their integrality leaded to negative objective 
 

Table 1: Optimal-price values on each Solomon R1-instances comprising the first 25 nodes  
Node R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

5.3 
29.7 
34.8 
20.5 
16.0 
6.6 
41.8 
17.8 
34.6 
19.0 
49.9 
8.5 
7.1 
27.4 
44.5 
38.4 
18.1 
31.6 
12.2 

5.3 
9.5 
9.2 
21.6 
8.5 
6.6 
7.2 
51.5 
33.1 
26.2 
39.5 
2.7 
7.1 
19.9 
43.2 
45.9 
10.7 
31.6 
10.9 

6.6 
8.6 
19.7 
35.7 
12.6 
20.9 
13.2 
38.2 
35.2 
29.6 
27.0 
2.70 
8.5 
31.5 
30.6 
4.4 
12.1 
6.4 
5.1 

11.6 
7.9 
24.4 
24.9 
8.0 
0.6 
11.9 
31.0 
34.4 
14.9 
28.4 
2.7 
13.2 
22.8 
35.3 
9.0 
16.8 
6.4 
12.1 

8.7 
31.5 
38.8 
20.5 
18.6 
14.1 
15.6 
34.1 
29.3 
25.5 
37.2 
8.5 
7.1 
36.8 
23.6 
11.5 
18.1 
18.3 
9.7 

1.0 
7.7 
16.7 
15.2 
2.6 
16.1 
19.7 
29.3 
41.5 
3.2 
34.5 
3.8 
13.4 
25.1 
30.2 
24.8 
18.6 
20.0 
18.7 

14.7 
9.7 
21.8 
20.4 
6.8 
17.6 
10.1 
33.3 
22.4 
20.6 
21.9 
4.1 
11.9 
30.6 
21.1 
12.4 
19.2 
4.6 
14.2 

7.3 
10.4 
19.2 
34.5 
12.3 
3.6 
11.8 
32.2 
22.3 
14.9 
16.1 
7.8 
9.3 
27.4 
22.6 
9.6 
12.2 
6.3 
16.1 

5.3 
10.4 
39.5 
17.0 
19.4 
13.8 
15.6 
21.6 
18.8 
29.6 
27.6 
3.8 
7.1 
27.3 
17.6 
15.0 
28.4 
12.4 
3.3 

1.0 
10.4 
37.2 
8.9 
11.7 
6.6 
15.6 
18.1 
27.7 
9.8 
26.1 
8.3 
7.1 
20.2 
20.7 
24.2 
15.6 
25.2 
10.6 

8.1 
10.3 
25.8 
16.6 
4.1 
21.3 
9.0 
22.2 
22.6 
18.1 
36.2 
8.9 
7.1 
32.2 
23.4 
9.6 
19.4 
13.7 
6.0 

5.3 
10.8 
15.9 
16.0 
15.1 
8.3 
6.6 
22.1 
33.1 
14.9 
26.1 
14.6 
7.1 
22.4 
19.6 
12.4 
11.7 
14.1 
9.5 
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20 
21 
22 
23 
24 
25 

35.0 
13.2 
10.3 
55.6 
21.7 
18.5 

32.7 
4.3 
10.3 
48.9 
41.8 
19.8 

16.7 
3.7 
10.3 
35.9 
21.0 
19.2 

9.9 
5.7 
15.0 
30.9 
19.0 
21.2 

16.7 
0.0 
10.3 
55.6 
23.0 
18.5 

21.0 
5.6 
15.6 
27.7 
29.0 
40.7 

15.4 
10.9 
16.4 
28.5 
17.9 
22.3 

27.4 
8.2 
9.8 
20.3 
16.6 
19.7 

16.7 
9.2 
37.5 
15.4 
18.3 
11.7 

35.0 
15.3 
23.0 
26.1 
21.7 
14.1 

15.4 
13.8 
16.4 
28.3 
21.1 
20.0 

15.1 
13.5 
17.9 
21.1 
17.9 
20.4 

Total 617.1 547.1 454.7 417.0 530.5 465.4 424.4 397.3 441.7 452.2 429.7 395.1 
 

function values. It can be observed here the effect of 
valid inequalities in the relaxation of the problems. The 
shrinkage of the objective function value shows that 
these additional constraints might lead to smaller branch 
and price trees and therefore to shorter CPU times. Nev-
ertheless, the relative reduction of the (negative) objec-
tive function value seems to depend on the problem 
morphology. These claims were tested by solving the 
R1-type VRPTW instances using the three different 
configurations of the SPPTWCC as slave problems 
within a basic branch and bound procedure (Barnhart et 
al., 2000). Results are presented in Table 3. We can note 
the following patterns: 
 The effect of valid inequalities in problems con-

strained by tight time-windows (i.e. R101, R105 
and R109) is null or slightly negative. 

 The positive effect of valid inequalities is mostly 
seen in problems constrained by weak time-
windows and can be considerable. See solution 
times for the R104, R108 and R-112 problems. 

 The global effect of valid inequalities is positive 
because tightly constrained problems (where the ef-
fect of inequalities is slightly negative) are much 
easier to solve than almost no-constrained problems 
on which the accelerating effect of valid inequali-
ties can be substantially positive. 

 The accelerating effect of lifted inequalities respect 
to un-lifted valid inequalities is minor. 

The Table 4 shows the number of columns generated 
while using the MILP formulations of the SPPTWCC. 
Interestingly, this number remains more or less constant  

for the whole problem series and is dramatically smaller 
than in algorithms that use conventional label setting 
procedures as routes-generators (See Larsen, 2000). In 
spite of this, CPU times are larger in our algorithms. 
This is because label-setting algorithms generate many 
columns per iteration. In spite of this initial disad-
vantage, our procedure shows the following properties: 
 It is very flexible since it can handle almost any 

structure of constraints while providing good per-
formances on known benchmark problems. Then, 
this MILP model can be a cornerstone to model 
more complex problems, like i.e. the pick-up and de-
livery problem and its realistic variations as multi-
commodity vehicle routing problems, routing prob-
lems with multiple time-windows, etc. 

 It should lead to smaller branch-and-price trees, thus 
erasing its disadvantages respect to label setting al-
gorithms in larger problems.  
To test the last claim we solved the R1 series involv-

ing the first 50 customers. The Table 5 shows resolution 
data for this problem set. Interestingly, if we compare 
this data with data from problems involving just 25 
nodes, we can’t detect an explosion of CPU times and 
of generated columns.  

The Table 6 shows resolution data en the R1-series 
involving 100 nodes. Although the number of columns 
grow with the problem size, this growing seems to be 
more or less bounded. I.e. the average number of col-
umns is around 200 for the 25 node-series, 400 for the 
50 nodes series and around 1000 for the 100 nodes se-
ries.   

Table 2: Objective function values for different SPPTWCC formulations with relaxed assignment (Yi) and sequencing (Sij) desicion-variables 
Config R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112 

1 -324.77 -305.47 -277.18 -266.30 -306.53 -289.07 -259.20 -263.08 -287.41 -319.48 -270.64 -272.35
2 -296.18 -268.27 -241.07 -223.99 -281.19 -265.04 -215.26 -211.36 -235.79 -243.80 -221.80 -206.78
3 -314.55 -279.01 -237.46 -213.70 -260.29 -251.99 -212.48 -203.81 -217.20 -235.45 -218.59 -206.78

Table 3: Resolution times (in seconds) and objective function values for the Solomon R1-instances comprising the first 25 nodes. 
Config R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112 

CPU time 
1 3.81 6.94 24.68 72.81 7.93 13.88 40.50 104.12 24.63 119.31 66.41 454.39 
2 8.93 7.87 22.22 41.63 9.16 13.69 37.39 74.04 22.95 66.35 31.62 185.10 
3 4.41 7.95 18.59 34.42 6.28 11.39 24.65 73.31 22.07 73.76 33.36 180.77 

Integer objective function 
 617.1 547.1 454.7 417.0 530.5 465.4 424.4 397.3 441.7 452.2 429.7 395.1 

Table 4: Columns generated while solving R1-instances (25 nodes) with the three configurations. 
Config R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112 

1 70 84 115 131 89 113 122 133 116 109 135 118 
2 70 84 116 130 89 110 124 165 124 110 123 122 
3 67 85 110 132 86 110 111 165 136 120 128 122 

Table 5: Overview of solution parameters for the R1-Solomon examples with 50 nodes 
 R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112 

Columns 216 292 393 488 370 353 431 556 365 381 415 506 
CPU (s) 19.5 56.9 238.6 423.5 61.5 107.2 378.9 935.0 221.1 359.4 419.7 809.2 

Integer Obj. Func. 1044.7 909.0 778.1 625.5 902.9 793.1 716.9 623.0 801.5 697.0 715.0 634.3 
Linear Obj. Func 1044.7 909.0 776.1 625.5 901.0 793.1 716.9 618.1 777.9 695.2 699.2 619.0 

Proven Opt Yes Yes Yes Yes Yes Yes Yes No No Yes No No 
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Table 6: Overview of solution parameters for the R1-Solomon examples with 100 nodes 
 R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112 

Columns 668 787 920 1035 863 964 996 1134 960 951 1051 1008 
CPU (s) 326.6 586.1 1820 4018 1454 4270 2362 4435 6971 2928 2716 3934 

Integer Obj. Func. 1644.4 1468.1 1231.2 1033.5 1373.7 1261.0 1108.6 1008.2 1191.1 1090.6 1071.0 1026.4
Linear Obj. Func 1631.5 1468.1 1209.7 976.7 1348.3 1232.7 1061.9 939.1 1143.4 1064.1 1037.9 977.1 

Proven Opt No Yes No No No No No No No No No No 
 

VII. CONCLUSIONS 
In this work, we developed a new MILP formulation for 
the SPPTWCC that is useful in the context of column 
generation methods designed to solve vehicle routing 
problems. It is flexible since it can handle almost any 
structure of constraints while providing good perfor-
mances on known benchmark problems. Thus, this 
MILP model can be used as a cornerstone to model 
more complex and more realistic problems. We have al-
so developed new valid inequalities tailored for such a 
model and introduced its “lifted” equivalences. The nu-
merical research demonstrates that these inequalities are 
useful in substantially reducing CPU times.  

We think that those developments constitute a start-
ing point for the development of slave route-generator 
problems that can model a wide arrange of realistic and 
complex problems. We can see a remarkably constant 
level of generated columns on problems of a given size 
but with different solution-morphologies. This obvious-
ly means that columns of more complex problems de-
mand higher generation times. Nevertheless, CPU times 
used to solve small problems with our formulation are 
higher than CPU times reported in the literature for al-
gorithms based on label-setting procedures. This is be-
cause these procedures are able to generate many col-
umns per iteration. Nevertheless, optimality for these 
columns maybe hard to prove. It is important to high-
light that the objective of the proposal is not to compete 
with algorithms based on label setting procedures but to 
complement them with this alternative model. It seems 
that a column generation algorithm involving calling to 
both types of “routes generators” seems to be the most 
efficient option. We should first use the label-setting al-
gorithm and then, whenever the branching mechanism 
demands a few but hard to find columns we should 
switch to the MILP formulation. This, of course, is an 
issue for future research. Another area of continuing re-
search should include the design of branching methods 
tailored to exploit the structure of the new formulation. 
It seems that branching on assignment variables Yi is an 
effective method to keep the search tree bounded. The 
continuing development of valid inequalities also de-
serves additional work. 
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