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Abstract� A �nite element formulation to

deal with the friction contact problem between

an elastic body and a rigid foundation is pre-

sented. An augmented Lagrangian method,

which incorporates two Lagrange multipliers

and a slack variable in the constraint equa-

tion, is developed. In this method, the so-

lution is achieved through a Newton-Raphson

monolithic iterative strategy and leads to sim-

ple implementation. Examples are provided to

demonstrate the accuracy of the proposed al-

gorithm.
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I. INTRODUCTION

Nonlinear contact mechanics is used in many me-
chanical engineering branches, and numerous works
have been dedicated to the numerical solution of con-
tact problems, including the design of gears (Gamez-
Montero et al., 2005), metal forming processes (Flo-
res, 2000; Garino Garcia and Ponthot, 2008), contact
fatigue (Madge et al., 2007) and many other applica-
tions. New advances and techniques, including fric-
tion, large deformation, plasticity and wear, are con-
stantly being introduced. However, there is not yet a
completely robust algorithm suitable for di�erent ap-
plications in contact mechanics.
The governing equations for the contact problem are

nonlinear and nondi�erentiable; therefore, these equa-
tions pose severe convergence problems for the stan-
dard Newton-Raphson techniques. Several algorithms
have been proposed in the literature to solve this prob-
lem. A complete review has been performed (Wriggers,
2002).
The penalty method is widely used in many con-

tact algorithms. This method adds a �penalty� term
to the energy functional, which regularizes the con-
straints. In this case, the displacement is the only
primal variable in the formulation, and consequently,
the computational implementation is relatively easy to
be carried out. The disadvantage is that this method

allows some penetration between the contacting bod-
ies, and the user must choose a correct value of the
parameter (the �penalty factor�) in a rather arbitrary
way to achieve acceptable solutions. The exact so-
lution is obtained only for an in�nite penalty value;
however, a large penalty value leads to ill-conditioned
matrices with severe precision losses in the computa-
tions. Therefore, many tests have to be carried out to
�nd the correct penalty value and verify convergence.

Nonlinear contact mechanics can be related to non-
linear optimization problems, which allows the use
of formulations with a more solid mathematical ba-
sis than the penalty method. The contact is mod-
eled using inequality constraints. This problem can be
formulated using the method of Lagrange multipliers,
which results in a saddle point system to be solved at
each iteration. An Uzawa-type algorithm is often em-
ployed. In this double loop algorithm, the equilibrium
problem is solved in the inner loop assuming a �xed
value for the Lagrange multiplier. The Lagrange mul-
tipliers are then updated within the outer loop, and
a new equilibrium problem is solved iteratively. This
procedure �nishes when the residual equilibrium, the
residual constraints and the Karush-Kuhn-Tucker con-
ditions are met within a certain tolerance. The method
of Lagrange multipliers is very popular in contact me-
chanics because it overcomes the ill-conditioning in-
convenience of the penalty method; however, it gen-
erates an increase in the matrix size due to Lagrange
multipliers with null diagonal terms in the global sti�-
ness matrix, and this method results in a more complex
implementation because of the double iteration strat-
egy. If the problem is highly nonlinear, this proce-
dure may be computationally expensive (Laursen and
Maker, 1995).

A combination of both the penalty and the La-
grange multipliers techniques produces the so-called
augmented Lagrangian method (Bertsekas, 1982). The
augmented Lagrangian method was proposed �rst by
Hestenes (1969) and Powell (1969) to solve optimiza-
tion problems with equality constraints. The addi-
tion of the penalty term to the Lagrangian constraints
allows one to obtain a convex objective function far
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from the solution, which improves convergence. Both
the augmented Lagrangian and the penalty methods
require a penalty parameter. However, in the aug-
mented Lagrangian method, the role of the penalty
factor is only to improve the convergence rate, while
in the penalty method, this factor determines the ac-
curacy of the solution.

In frictional contact problems, when slip occurs,
some numerical di�culties arise due to the indepen-
dence between the tangential force and the tangential
displacement, which leads to a non�symmetrical sti�-
ness matrix. The friction phenomenon has been incor-
porated in the formulation of a unilateral contact by
several authors; see, for example, Alart and Curnier
(1991).

Several techniques have been proposed to incorpo-
rate the handling of inequality constraints in the New-
ton method, including the following examples: i) the
active set strategies, which are applied in combination
with the Lagrange multipliers (Hartmann and Ramm,
2008), ii) the use of slack variables on a slacked La-
grangian method (Byrd et al., 2000), and iii) the use
of other techniques (Rockafellar, 1973; Tseng and Bert-
sekas, 1993). A Lagrangian method that used a com-
bination of the Rockafellar Lagrangian method and
an exponential Lagrange multipliers method together
with a slack variable in the constraint was proposed
by Areias et al. (2004).

In this work, which was inspired by the Lagrangian
method presented in the paper of Areias et al. (2004),
a new algorithm to solve contact frictional problems
using an augmented Lagrangian method is presented.
We modi�ed the activation/desactivation conditions
proposed by Areias et al. to solve the problem in
a monolithic form using a Newton-Raphson strategy.
This procedure avoids the use of the Uzawa algorithm
and simpli�es the practical implementation of the al-
gorithm.

The work is organized as follows. Section II. de-
scribes the contact problem conditions. In Section III.,
the frictionless contact problem using Lagrange multi-
pliers is presented and the matrices used to formulate
the contact problem are detailed. Section IV.presents
the friction contact problem. The algorithm for the
solution of the frictional problem is described in Sec-
tion V., where the sti�ness matrix related to the fric-
tion contact contribution is derived explicitly. In Sec-
tion VI., two numerical examples are presented to
demonstrate the performance of the proposed formu-
lation, and conclusions are given in Section VII..

II. CONTACT PROBLEM DESCRIPTION

The equilibrium equation, in the context of a nonlinear
problem and for a body B that occupies an open set
Ω ⊆ R3 with smooth boundary Γ , is given by the
following equation

Div[F · S] + b = 0 in Ω, (1)

Figure 1: Contact between an elastic body and a rigid
foundation.

where F , S, and b are the material deformation gra-
dient, the second Piola-Kirchho� stress tensor and the
body forces in Ω, respectively. The second Piola-
Kirchho� stress tensor is related to the strains by an
appropriate constitutive equation, i.e.,

S = C : E, (2)

where C is the constitutive fourth-order tensor (Og-
den, 1984), and E is the Green-Lagrange strain tensor
de�ned as

E =
1

2
(F TF − I). (3)

In a general case, Signorini's contact problem con-
sists of �nding the elastic equilibrium con�guration of
an anisotropic, non-homogeneous, elastic body resting
on a rigid, frictionless surface. It is a boundary value
problem where the displacement �eld u has to sat-
isfy the equilibrium equation as well as the Dirichlet,
Neumann and contact conditions. In the case of the
frictional contact, the problem becomes more compli-
cated due to the non-conservative forces involved in
the process.

Let us consider the body is supported by a friction-
less, rigid foundation, as seen in Fig. 1. Then, Γ is
split into three disjointed boundaries: Γu is where the
body is �xed, Γσ is on which the surface traction is
acting, and Γc is in contact with the rigid foundation.
The boundary conditions are then expressed in the fol-
lowing form:

1. The Dirichlet boundary condition

u = 0 on Γu. (4)

2. The Neumann boundary condition

t = FSN = t̂ on Γσ. (5)

where t is the traction vector, F is the deforma-
tion gradient, N is the normal vector to the con-
tact surface at the reference con�guration and t̂
represents the prescribed traction vector.
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3. The contact conditions (Karush-Kuhn-Tucker
conditions)

gN (u) ≤ 0,

tN ≥ 0,

tNgN (u) = 0

 on Γc (6)

where tN = t · n is the normal component of
the traction vector, and gN (u) is the constraint
function.

In a contact mechanics framework, gN (u) represents
the normal interpenetration function between bodies.
The sign of gN indicates whether the bodies come into
contact. A negative value implies that the bodies are
not in contact, whereas a zero value indicates contact.
Assuming, without loss of generality, that the contact
surface is planar, i.e., normal contact, only the normal
component of the traction vector tN and the normal
gap distance gN are taken into account.
For conciseness, this study is limited to the case of

normal contact between the �exible body and a planar
rigid foundation. This does not imply a lack of gener-
ality of the solution method, i.e., it can be extended
to contacts between �exible bodies with any geome-
tries; nevertheless, more elaborate methods need to
be considered to model the geometric aspects and the
interrelations between bodies.

III. FRICTIONLESS CONTACT

ALGORITHM

The Finite Element Method (FEM) is used to dis-
cretize �exible bodies. Detailed FEM implementation
descriptions for solid mechanics problems can be found
in well-known textbooks, e.g., Zienkiewicz and Tay-
lor (2000); Bathe (1996); Cris�eld (2000). The �exi-
ble/rigid contact problem using FEM can be formu-
lated using

q = arg min Π(q)

subject to gN (q) ≤ 0,
(7)

where Π is the total potential energy, q is the global
displacement vector, and gN (q) is the normal inter-
penetration evaluated at a given node. For simplic-
ity, a simple nodal contact approach is used in this
work. Nevertheless, the solution method can be ap-
plied with other techniques of modeling contacts, e.g.,
mortar methods (Wriggers, 2002). In the equations
that follow, the contact at a single node is assumed to
be a scalar function gN (q), but these equations can be
directly extended to cases with vector nonlinear nor-
mal interpenetration functions.
The augmented Lagrangian for which stationary val-

ues are sought to solve problem (7) can be expressed
as

L(q, λ) = Π(q) + kλgN (q) +
k

2
g2N (q), (8)

where λ is the Lagrange multiplier and k is a scal-
ing factor. Note that the scaling factor k times the

Lagrange multiplier λ is equal to the contact normal
force

tN = kλ, (9)

because this term is conjugated to the normal inter-
penetration gN . The augmented Lagrangian method
improves the convergence rate by adding convex-
ity far from the solution with the penalty factor k
(Géradin and Cardona, 2001). Usually, the augmented
Lagrangian method needs to be combined with an
Uzawa-type algorithm (Bertsekas, 1982). This is a
double loop algorithm where, in the inner loop, the
weak form of the equilibrium is solved with the set
of active Lagrange multipliers held constant. Then,
the sets of active Lagrange multipliers and inactive
Lagrange multipliers are updated in the outer loop,
the values of the active set are recalculated with dis-
placements held constant, and the whole procedure is
iterated until convergence is achieved in both cycles.
Instead of using this procedure, we propose to solve

the contact problem and the weak form of the equi-
librium at the same time using a standard Newton-
Raphson iterative monolithic strategy. From Eq.(7),
the inequality constraint can be transformed into an
equality constraint and a side constraint by introduc-
ing the scalar variable s. In optimization theory, s is
called a slack variable (Bauchau, 2000). By rewriting
Eq.(7), the following system is obtained

q = arg min Π(q)

s.t.

{
gN (q) + s = 0

s ≥ 0.

(10)

In this way, the nonlinear inequality constraint has
been replaced by an equality constraint and a sim-
ple linear side constraint, which acts directly on the
newly added degree of freedom s. The augmented
functional corresponding to Eq.(10), which includes
the slack variable and a second Lagrange multiplier,
takes the following form

L(U) = Π(q) +Πc(U) ={
Π(q) + (kλφ1 +

k
2φ1φ1 + kλ1s) s.t. c1,

Π(q) + (kλφ1 +
k
2φ1φ1) s.t. c2,

(11)

where U = [qT s λ λ1]
T , Πc(U) is the contribution

of contact to the system Lagrangian, the activation-
deactivation conditions c1 and c2 are de�ned as

c1 = {s < 0 or (s = 0 ∧ λ1 < 0)} contact,

c2 = {s > 0 or (s = 0 ∧ λ1 ≥ 0)} no contact,
(12)

and where φ1 is the slacked constraint:

φ1 = gN (q) + s. (13)

The activation-deactivation conditions that are used
here di�er from the ones used in Areias et al. (2004).
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Also, the expression of the Lagrangian used in Areias
et al. (2004) was an exponential barrier, while here we
are proposing to use a simple linear penalty, which we
show give accurate results.

This formulation of the contact problem, in terms
of an augmented Lagrangian with a slack variable and
two multipliers, permits the use of a monolithic solu-
tion scheme based on the Newton-Raphson iterations
for all of the variables simultaneously without an ac-
tive set strategy. The solution to the contact problem
is given by the set of values that render the augmented
Lagrangian function stationary:

U = arg stat L(U). (14)

By taking variations in Eq.(11), we get the contribu-
tions of deformation energy and contact to the total
virtual work:

δL(U) = δΠ(q) + δΠc(U) = δU · r(U) (15)

where r(U) is the nonlinear residual vector:

r(U) =


∂Π
∂q

0
0
0

 +




k(λ+ φ1)

∂gN
∂q

k(λ+ φ1) + kλ1
kφ1
ks

 s.t. c1,


k(λ+ φ1)

∂gN
∂q

k(λ+ φ1)
kφ1
kλ1

 s.t. c2.

(16)
Note that the fourth equation under condition c2 is
added to avoid having a singular system when the sec-
ond constraint, corresponding to λ1, is not active.

The latter system of equations can be di�erentiated
to compute the contributions to the global sti�ness
matrix. These contributions take the following form:

S(U) =




kBBT kB kB 0T

kBT k k k
kBT k 0 0
0T k 0 0

 s.t. c1,


kBBT kB kB 0T

kBT k k 0
kBT k 0 0
0T 0 0 k

 s.t. c2,

(17)
where B is the constraint gradients matrix B =
∂gN/∂q.

To describe the relative displacement between two
contacting bodies, we adopt a node(slave)/surface
(master) strategy where the contact normal force is
evaluated at each active contact node of an element.
Then, to compute the master surface normal vectors,
the tangential vectors to the surface are required and

Figure 2: Regularization of the Coulomb law.

are given by,

a1 = x2 − x1; a1 =
x2 − x1

‖ x2 − x1 ‖
;

a2 = x3 − x1; a2 =
x3 − x1

‖ x3 − x1 ‖
;

(18)

where xi represents the nodal coordinate vectors of the
element contact surface, see Fig. 2. Then, the normal
vector yields

n =
a1 × a2

‖ a1 × a2 ‖
. (19)

IV. FRICTIONAL CONTACT PROBLEM

The frictional contact problem is more cumbersome in
its formulation and solution than the frictionless one.
In the frictional contact problem, there are inequality
constraints both in the normal and in the tangential
directions at the contact interface. Two di�erent states
can now be distinguished: the �stick� state with null
tangential displacement, and the �slip� state when tan-
gential displacement occurs.
Some numerical di�culties appear during the stick

state. The Coulomb friction law imposes a null dis-
placement, which corresponds to an in�nite tangential
sti�ness. To avoid this problem, a piecewise, linear
regularized Coulomb friction law is used as shown in
Fig. 3. This law assumes that, in the stick state, the
tangential force depends linearly on the tangential dis-
placement by a penalty factor (or tangential sti�ness)
εT . This approach is physically justi�ed because the
contact surfaces are not perfectly �at (Kikuchi and
Oden, 1988). Based on this physical interpretation,
other nonlinear formulations can be proposed. Usu-
ally, it is necessary to incorporate numerical parame-
ters to adjust for the tribological behavior of the ma-
terial (Kikuchi and Oden, 1988; Ling and Stolarski,
1997). However, the penalty parameter for the fric-
tion law has to be normally interpreted as a numerical
coe�cient.
In the slip condition, the tangential force becomes

independent from the tangential displacement, and is
given instead by a relation with the normal contact
force. For this reason, the sti�ness matrix becomes
non-symmetric.
The equations for the frictional contact problem are

derived by splitting the Cauchy traction vector t into
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Figure 3: Contact normal vector de�nition.

a normal component tN and a tangential component:
tT = (I −n⊗n)t. The total tangential displacement
gT can be split into an �elastic� or stick portion gstickT

and a �plastic� or slip portion gslipT ,

gT = gstickT + gslipT . (20)

The state of sticking or slipping is recognized using the
slip potential function Φ(tT ):

Φ(tT ) =‖ tT ‖ −µtN

{
< 0, stick

= 0, slip,
(21)

where µ denotes the coe�cient of friction. In case of
having Φ(tT ) < 0, the tangent contact force is less than
µ times the normal contact force, and sticking occurs.
When slipping, the tangent contact force equals the
friction coe�cient times the normal contact force, and
the slip potential function is equal to zero. Note that
the slip potential function should be strictly less than
or equal to zero.
As mentioned before, a regularized Coulomb's law

is used, see Fig. 3. In the pure stick case, the traction
vector tT is computed using an �elastic� constitutive
law as follows,

tT = εTg
stick
T . (22)

Eq.(22) can be seen as a penalty regularization of the
stick condition, gstickT = 0, with penalty constant εT .
Slipping is formulated using an evolution law derived
from the slip potential function Φ(tT ) (which is simi-
lar to the plastic potential in the framework of elasto-
plasticity). The constitutive equation for the slip path
is

ġslipT = γ̇
∂Φ

∂tT
= γ̇eT with eT =

tT
‖ tT ‖

, (23)

where γ̇ is the unknown consistency parameter (slip
rate). In the case of slipping, this parameter should
be strictly positive; it is zero when the system is in
stick condition.
Then, the Karush-Kuhn-Tucker conditions for fric-

tional contact can be written as

γ̇ ≥ 0 Φ ≤ 0 γ̇Φ = 0, (24)

where the last condition is the complementarity con-
dition.

Figure 4: Tangential vector de�nition.

The frictional contact problem is therefore formu-
lated by the set of equations for frictionless contact,
i.e. Eqs.(1-6), supplemented with the Karush-Kuhn-
Tucker conditions for frictional contact, Eqs.(24).

V. FRICTION ALGORITHM

DESCRIPTION

There are many proposed algorithms to solve the fric-
tion problem (Simo and Laursen, 1992; Laursen, 1992;
Alart and Curnier, 1991). In this work, an algorithm
to update the tangential traction vector tT and the
tangential displacement gT using an unconditionally
stable backward-Euler integrator is used, which is also
known as a return mapping algorithm. This algorithm
is similar to that used for elasto-plasticity (Simo and
Hughes, 1998).
The contact virtual work expression, Eq.(15), is

modi�ed by adding the contribution of the tangential
friction forces as follows

δΠc = δgN tN + δgT · tT , (25)

where the terms δgN and δgT express the variations
of the motion into directions normal and tangential to
the contact surface Γc, respectively.
We assume the body slides on a rigid planar surface

Γc to simplify the presentation. The relative tangential
displacement at time tn+1 can be expressed as

∆gTn+1 = (tv ⊗ tv + tw ⊗ tw)∆q = Q∆q, (26)

where tv and tw are two mutually orthogonal unit vec-
tors tangent to the surface Γc, ∆q is the increment of
displacement, Fig. 4, and where

Q = tv ⊗ tv + tw ⊗ tw. (27)

Assuming that the local state of the body at time
tn+1 is completely de�ned from the previous time tn,
the trial tangential force vector ttrialTn+1

is de�ned as fol-
lows

ttrialTn+1
= εT (gTn+1

− gslipTn
) = tTn

+ εT∆gTn+1
, (28)

where we have de�ned tTn = εT (gTn − gslipTn
). The

direction of the tangential force at time tn+1 is coinci-
dent with the direction of the trial tangential vector

eTn+1
=

ttrialTn+1

‖ ttrialTn+1
‖
. (29)
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The slip potential function, Eq.(21), is evaluated for
the trial state at the current time as

Φ(ttrialTn+1
) =‖ ttrialTn+1

‖ −µkλn+1

{
< 0, stick

≥ 0, slip.
(30)

where tN = kλ has been used, Eq.(9). In the case of
sticking, there is no slipping component of motion, and
the traction vector is equal to the trial force vector

tTn+1
= ttrialTn+1

, (31)

while the tangential relative motion leads to

gstickTn+1
=

1

εT
tTn+1

. (32)

Otherwise, when slipping in the tangential direction
occurs, we integrate Eq.(23) using a backward-Euler
scheme to obtain:

gslipTn+1
= gslipTn

+ ΛeTn+1
, (33)

where Λ = γ̇∆t denotes the unknown incremental slip.
The traction vector is given by the expression:

tTn+1
= ttrialTn+1

− ΛεTeTn+1
. (34)

Because we are in the slipping state, we set Φ = 0 in
Eq.(21), and by taking the norm of Eq.(34), we obtain
Λ explicitly as follows

Λ =
1

εT

(
‖ ttrialTn+1

‖ −µkλn+1

)
. (35)

Finally, with the incremental slip parameter Λ from
Eq.(35), the traction vector tTn+1 and the tangential
displacement vector gTn+1

at time tn+1 are established
by introducing Eq.(35) into Eq.(34) and Eq.(35) into
Eq.(33). Thus,

tTn+1 = µkλn+1eTn+1 . (36)

gslipTn+1
= gslipTn

+
1

εT

(
‖ ttrialTn+1

‖ −µkλn+1

)
eTn+1

. (37)

A detailed explanation of this algorithm can be
found in Simo and Hughes (1998) or Wriggers et al.
(2001).
According to Eqs.(25,26), the contribution from the

tangential friction term to the residual vector is given
by

rTn+1 =


∂gTn+1

∂qn+1
tTn+1

0
0
0

 =


QtTn+1

0
0
0

 . (38)

The tangent matrix is obtained by di�erentiation of
the residual force vector.

Sn+1 =
∂rn+1

∂Un+1
. (39)

Figure 5: Elastic body pressed against a rigid founda-
tion and pulled tangentially.

In the case of stick, the following form is obtained:

Sn+1 =


εTQ 0 0 0
0T 0 0 0
0T 0 0 0
0T 0 0 0

 . (40)

The procedure is analogous for the slipping state. The
tangent matrix is calculated in this case as

Sn+1 =


Kslip
n+1 0 µkQeTn+1

0
0T 0 0 0
0T 0 0 0
0T 0 0 0

 , (41)

where

Kslip
n+1 =

µkλn+1

‖ ttrialTn+1
‖
QAn+1Q, (42)

An+1 = I − eTn+1
⊗ eTn+1

(43)

VI. NUMERICAL EXAMPLES

Two numerical examples are presented to evaluate the
robustness and accuracy of the proposed contact algo-
rithm. The examples involve quasi-static simulations
and were carried out in the research �nite element code
Oofelie (2011). All pre- and post-processing were per-
formed using the software SAMCEF (2007).

A. Validation example I: 3D friction test.

This example represents an important validation test,
which was originally presented by Oden and Pire
(1984) as a 2D friction test, for the friction contact
problem. More recent versions have been proposed by
Armero and Petocz (1999) and Areias et al. (2004).
Here, we compare our 3D results introducing a plane
strain state, which reproduces the same 2D bound-
ary conditions. The mesh topology, boundary condi-
tions, dimensions and material properties are shown
in Fig. 5.
The material behaviour used in this example is lin-

ear elastic. The mesh has 462 nodes and 200 hexa-
hedral linear �nite elements as shown in Fig. 5. The
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Figure 6: Final con�guration. Displacement �eld in
the Y direction.

Figure 7: Normal stress �eld in the Y direction.

Figure 8: Tangential stress �eld in theX−Y direction.

lateral boundary conditions are used to reproduce the
plane strain state. A uniform pressure qy acts on the
deformable body surface and presses it against the
rigid foundation. Then, a horizontal pressure �eld qx,
starting on one side of the body, pulls it. The �nal con-
�guration is shown in Fig. 6. Figures 7 and 8 show
the normal and tangential stress �elds, respectively.
Figure 9 shows a comparison of the results in terms

of normal and tangential stresses. The results obtained
agree with those obtained by Armero and Petocz
(1999). These results were obtained in a single com-
putational step with seven iterations.

B. Validation example II: 3D large

displacements friction test.

This 3D friction example was proposed by Joli and
Feng (2008). It consists of the contact analysis for a
3D cube on a rigid planar surface with a large amount
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Figure 9: Normal stress σyy and tangential stress τxy
at the contact interface. The results are compared the
results obtained by Armero and Petocz (1999).

of sliding.
Two prescribed displacements, a and b, are imposed

at the top surface A-B-C-D as shown in Fig. 10. First,
the vertical displacement a is applied and is followed
by the horizontal displacement b with an orientation
of 60◦ with respect to the X axis. The boundary con-
ditions are summarized below

• Vertical displacement: a = (0, 0,−0.1) mm im-
posed in 10 equal load steps.

• Horizontal displacement:
b = (0.4 cos 60, 0.4 sin 60, 0) mm imposed in 40
equal load steps

• Total number of load steps: 50.

The elastic material property values are: E =
210000 N/mm2 and ν = 0.3, and the value for the
coe�cient of friction µ is 0.3. Each cube side length
is 1 mm. The mesh has 27 nodes, with eight hexahe-
dral non-linear elements (see Fig. 10). The tangential
sti�ness for the regularized Coulomb law is selected
with a large value to reproduce the Coulomb law as
accurately as possible (εT = 5× 1010).
A total of 50 computational steps are used in the

simulation, giving with a mean of 7.3 iterations per
step. The same problem was solved by Joli and Feng
(2008), using a mean of more than 20 iterations per
step. Fig. 11 shows the displacement components Ux
and Uy at the point F, whereas Fig. 12 shows the nor-
mal contact force variation at the points F and H.
Both curves agree with those presented by Joli and
Feng (2008).

VII. CONCLUSION

A new contact algorithm using an augmented La-
grangian method with two Lagrange multipliers is pro-
posed. The strategy of implementing an additional
slack variable with a Newton-Raphson strategy in a
monolithic scheme avoids the programming complica-
tions of algorithms based on activation / deactivation
of constraints with a two-leveled iterative loop.
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Figure 11: Displacement evolution Ux and Uy at the
point F. The results are compared with those obtained
by Joli and Feng (2008).
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Figure 12: The normal force evolution at the points
F and H. The results are compared with the results
obtained by Joli and Feng (2008).

The strategy is based on a Rockafellar Lagrangian
method and is similar to that presented in the work
of Areias et al. (2004). Nevertheless, the approach
presented here is simpli�ed without using exponential
barriers. Also, the conditions for activation / deacti-
vation of constraints are di�erent from those of Areias
et al. (2004), and are implemented more easily.

The equations for the analytic computation of the
residual forces and tangent matrices are presented.
The strategy can be implemented very easily in a �-

nite element program for nonlinear analysis without
any change to the main structure of the code.
Two three-dimensional numerical examples with a

frictional contact are shown. The results of these ex-
amples compared well with results from previous stud-
ies. The performance in the examples was good and
demonstrates the potential of the proposed approach.
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