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Ácido abscísico, y tolerancia al estrés hídrico inducido por 
ácido abscísico en plantas herbáceas y de olivo (Olea europaea) 
micorrizadas

Abscisic acid, and abscisic acid-induced 
water stress tolerance in mycorrhizal 
herbaceous and olive (Olea europaea) 
plants

ABSTRACT

The worldwide expansion of drought-affected areas has a negative effect on crop 
yield and production, making water stress the most significant abiotic stress, limiting 
plant growth and development. The use of arbuscular mycorrhizal fungi (AMF) is 
a strategy that mitigates the effects of this kind of stress in a sustainable way, which 
occurs due to the increased tolerance to water stress in plants inoculated with these 
fungi. Modern agriculture is facing the challenge of ensuring global food demand. 
However, climate change is causing an increase in temperature that leads to severe 
droughts in some areas. Numerous biotechnological techniques are being used to 
overcome this drought stress. Among them, the use of AMF is considered an effi-
cient approach to mitigate such stress. AMF provide water stress tolerance through 
biochemical and physiological mechanisms. Some of the well-known mechanisms 
include modification of hormonal balances comprising strigolactones, abscisic acid, 
gibberellic acid, salicylic acid, and jasmonic acid. The symbiosis of AMF changes 
the expression of the aquaporins (water transporting channels) present in the plasma 
membrane and tonoplast, improving plant water status.
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INTRODUCTION

Anthropogenic activities, such as desertification, imprudent utilization of water and 
industrialization lead to pollution and consequently cause climate changes (Perera & 
Nadeu, 2022). Climate change is multi-faceted, and includes changing concentrations 
of greenhouse gases in the atmosphere, rising temperatures, changes in precipitation 
patterns, and increasing frequency of extreme weather events (e.g., Sisco et al., 2017). 

Plant growth is controlled directly by plant water stress and only indirectly by 
soil water stress. Plant water stress depends on the relative rates of water absorption 
and water loss rather than on soil water supply alone. Therefore, it is not safe to 
assume that a given degree of soil water stress always will be accompanied by an 
equivalent degree of plant water stress. Plant water stress should be measured direct-
ly in research on the effects of water supply on plant growth and plant processes if 
the results are to be interpreted correctly. In this review, we focused on the effects of 
water stress on plant developmental processes (e.g., phytohormones production), and 
on the phytohormones-induced water stress tolerance in mycorrhizal olive plants. 
Drought is one of the most important factors that limits crop production worldwide 
(Qi et al., 2022). For example, approximately 67% of crop losses were reported in the 
U.S.A. due to drought stress during the last 50 years. Severe drought conditions de-
termine increasing and forcing up food prices. On the other hand, world population 
is increasing day by day and may reach over 9.8 billion in 2050 (United Nations, 
2017). Fulfilling food requirements of a burgeoning population, the agriculture food 
must be increased up to 70% (Sah et al., 2016). We need to develop technologies and 

RESUMEN

La expansión de áreas afectadas por la sequía en el mundo tiene un efecto negativo 
en el rendimiento y la producción de cosechas, haciendo que el estrés hídrico sea el 
estrés abiótico más significativo que limita el crecimiento y desarrollo de las plantas. 
El uso de hongos micorrízicos arbusculares (HMA) es una estrategia que alivia los 
efectos de este estrés de una manera sostenible. Esto es debido al incremento en la 
tolerancia al estrés hídrico en plantas inoculadas con estos hongos. La agricultura 
moderna está enfrentando el desafío para asegurar una demanda global de alimentos. 
Sin embargo, el cambio climático está causando un incremento de temperatura que 
conduce a la producción de severas sequías en algunas áreas. Numerosas técnicas 
biotecnológicas se están utilizando para superar los efectos producidos por este estrés. 
Entre ellas, se piensa que el uso de los HMA es un excelente enfoque para reducir 
tales efectos. Los hongos micorrízicos arbusculares proveen tolerancia al estrés hí-
drico por medio de mecanismos bioquímicos y fisiológicos. Algunos de los mecanis-
mos incluyen la modificación de los balances hormonales comprendiendo los ácidos 
abscisico, giberélico, salicílico y jasmónico, y las strigolactonas. La simbiosis de los 
HMA cambia la expresión de las acuaporinas (canales que transportan agua) de la 
membrana plasmática y el tonoplasto, lo cual mejora el estado hídrico de la planta. 

Palabras clave — Estrés hídrico; fitohormonas; micorrizas arbusculares; olivo; tolerancia al estrés.
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policies regarding climate change and drought stress, efficient water use, control of 
the growing human population, and production of drought-tolerant crops.

In response to water stress conditions, plants have evolved biochemical mech-
anisms to maintain constant cellular water potential and/or relative water content 
(Soltys-Kalina et al., 2016). These processes are controlled by numerous phytohor-
mones which are the basic mediators to tolerate or avoid the negative effects of water 
stress. This review mainly focuses on the abscisic acid-induced drought tolerance in 
mycorrhizal herbaceous and olive plants.

PHYTOHORMONES

Phytohormones are the key regulators of plant growth and developmental processes 
as well as crucial for biotic and abiotic stress response throughout their life cycle 
(Sah et al., 2016; Ullah et al., 2017). In addition to various other phytohormones, 
abscisic acid (ABA) is considered the main hormone which intensifies water stress 
tolerance in plants through various morpho-physiological and molecular processes 
including stomata regulation, root development, and initiation of ABA-dependent 
pathways (Aslam et al., 2022). Phytohormones perform as chemical messengers in 
response to various abiotic stresses, like water stress. After stress signal perception, 
phytohormones release which activate various plant physiological and developmental 
processes including stomatal closure, root growth stimulation, and accumulation of 
osmolytes to avoid water stress conditions (Fahad et al., 2016). 

ABA is a weak acid that was first isolated as an abscission-accelerating substance 
(Lee et al., 2021). ABA, which is not directly involved in the process of abscission, 
is a major stress hormone that participates in various crucial physiological processes 
during the plant life cycle, including stress responses, development and reproduction 
(Dong et al., 2015). ABA is synthesized in the plastids and cytoplasm and derived 
from zeaxanthin, a plant pigment. A cluster of NCED (9-cis-epoxycarotenoid diox-
ygenase) genes are thought to be involved in ABA synthesis (Huang et al., 2015). 
There are other phytohormones (e.g., jasmonic acid, salicylic acid, ethylene, aux-
ins, gibberellins, cytokinins, and brassinosteroids) that congregate the challenges of 
water stress (Chen et al., 2017; Liu & Zhang, 2017; Lo et al., 2017). However, these 
hormones are usually cross talk with each other to increase the survival of plants 
under water stress conditions (Verma et al., 2016). On the other hand, the transgenic 
approach is currently the most accepted technique to engineer the genes responsible 
for the synthesis of phytohormones in response to water stress. 

Osmotic stress promotes the synthesis of ABA, which activate gene expression 
and adaptive physiological changes (Rowe et al., 2016). ABA levels increase during 
stress conditions and decrease when stress is relieved. In addition, ABA concen-
tration is higher in the younger than in the mature leaves. As leaves develop and 
mature, the ABA concentration declines and older leaves export ABA to younger 
ones. At the same time, the sensitivity of stomata to ABA increases throughout leaf 
development (Haworth et al., 2018). Upon stress arrival, signal perception occurs 
through the plasma membrane, ABA synthesis is initiated, which occurs mostly 
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in the plastids, with the exception of xanthoxin conversion to ABA, which takes 
place in the cytoplasm (Ma et al., 2018). Generally, ABA synthesis occurs in the 
roots. It is then transported via vascular tissues, and it shows responses in a variety 
of cells, such as guard cells and others (Postiglione & Muday, 2020). ABA must be 
translocated from the cells where it is synthesized via intercellular transport into 
the neighboring tissues (Silva, 2020). As a weak acid, ABA is a charged anion (i.e., 
ABA-) in the cytoplasm (pH 7). In the more acidic cell wall (pH 5.5), some is left un-
charged (ABAH). This presumably enhances the movement of ABA into but not out 
the cells, while cell-to-cell ABA transport is enhanced by transporters [i.e., plasma 
membrane-bound ATP-binding cassette (ABC) transporters, which hydrolyze ATP 
to transport it, and a family of low-affinity nitrate transporters]. ABA perception 
and signal transduction are mediated by two pathways, which are ABA-dependent 
and ABA-independent. Water stress predominantly induces gene expression through 
the initiation of an ABA-independent pathway (Soma et al., 2021). These pathways 
have been reviewed in detail (Kuromori et al., 2018).

ABA-dependent signaling pathways play a critical role in stress-responsive gene 
expression during various stresses, especially osmotic stress. ABA receptors are im-
portant elements for ABA signal transduction. Various receptors have been identified 
in different sub-cellular compartments, including the plasma membrane, nucleus, 
cytosol, and chloroplast envelope. ABA content is low under normal conditions, 
and SnRK2 protein kinase activity is inhibited by PP2C phosphatases, which leads 
to dephosphorylation. The cellular ABA level increases when plants are exposed to 
water stress, and ABA then binds to PYRABACTIN RESISTANCE1/PYR1- LIKE/ 
REGULATORY COMPONENTS OF ABA RECEPTORS (i.e., PYR/PYL/RCARs, 
respectively) which in turn bind and inactive protein phosphatases 2C (PP2Cs, Ullah 
et al., 2017). Thus, PYR/PYL/RCARs are necessary for ABA responses, and various 
genes encode these receptors. The sucrose nonfermenting 1-related protein kinase 2 
(SnRK2s) is auto activated when it dissociates from PP2Cs. The SnRK2s are protein 
kinases that promote ABA responses (Yang et al., 2019); SnRK2.2, SnRK2.3, and 
SnRK2.6 have been proven to be involved in ABA response (Hasan et al., 2022). In 
addition, there are 76 PP2Cs in Arabidopsis but only clade A participates in ABA 
signaling (Wang et al., 2023). Even more, ABA-dependent signaling pathway has 
several branches controlled by various transcription factors including MYB, MYC 
and NAC. In addition, ABA-responsive elements (ABREs) are also involved in ABA 
signaling (de Ollas & Dodd, 2016). Calcium-dependent protein kinases (CDPKs) 
also participate in ABA signaling (Shi et al., 2018). Two CDPKs (i.e., CPK4 AND 
CPK11) have been reported to be involved in the regulation of ABA signaling in 
Arabidopsis (Shi et al., 2018). Activated SnRK2s phosphorylate downstream targets 
and trigger ABA-induced physiological and molecular responses including germina-
tion, stomata regulation, root development and photosynthesis (Wang et al., 2018). 
ABA regulates many stress-related genes to enhance water stress tolerance in plants 
(Shen et al., 2017).
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ARBUSCULAR MYCORRHIZAL FUNGI

AMF belong to the phylum Glomeromycota, encompassing ten out of eleven fam-
ilies: Acaulosporaceae, Ambisporaceae, Archaesporacea, Claroidoglomeraceae, Di-
versisporaceae, Gigasporaceae, Glomeraceae, Pacisporaceae, Paraglomeraceae, and 
Sacculosporaceae (http://www.amf-phylogeny.com/, accessed on 1 June 2023). Given 
their status of obligate biotrophs, the AMF life cycle cannot be completed in the 
absence of host plants. It starts with an asymbiotic phase, during which spores 
germinate in response to physical factors such as moisture, temperature and pH, 
producing hyphae with a limited lifespan (Giovannini et al., 2020). In the presence 
of root exudates from host plants, a differential hyphal morphogenesis occurs, with 
germling hyphae reorienting the direction of elongation and initiating a differential 
branching pattern (Giovannini et al., 2020): this pre-symbiotic phase is followed by 
physical contact between AMF hyphae and host roots, with the differentiation of 
appressoria, which give rise to hyphae growing intercellularly within the root cortex, 
eventually penetrating in root cells and producing highly branched hyphal tree-like 
structures similar to haustoria, the arbuscules. The extraradical hyphae of AMF of 
one plant root system forage for the soil nutrients and induce the root colonization 
of the nearby plants, which leads to the formation of common mycorrhizal networks 
that interconnect roots (Busso & Busso, 2022). Inoculation with AMF can increase 
the root length, surface area and volume of seedlings in nutrient-limited karstic soils. 
Mycorrhizal symbioses can secrete glomalin to help promoting soil aggregates for 
water and nutrients storage, through an extended hyphae to absorb water and nutri-
ents from long distances. AMF can boost rhizosphere soil enzyme activities, and may 
help to drive carbon sequestration. AMF also improve plant growth by advancing 
soil quality through influencing its structure and texture. As a result, AMF and 
CMNs benefit plants through improving soil quality and enhancing morphological 
(e.g., hyphal length, tillering, number of stolons per individual), physiological (e.g., 
water use efficiency) and productive (e.g., fresh and dry shoot and root weights) 
traits (Busso & Busso, 2022).

As obligate biotrophs, AMF receive photosynthetic products and lipids from 
root cells (Giovannini et al., 2020). When addressing the regulation of such an in-
timate plant-microbe interaction as AMF, plant hormones are primer targets. The 
colonization of a plant root by AMF often improves growth and stress tolerance of 
the whole plant, besides the most important feature of the mutualistic symbiosis 
(Begum, 2019). In particular, AMF can alleviate water stress conditions. Indeed, a 
number of cases have been reported where the beneficial effects of AMF on plant 
performance became apparent under water stress conditions (Chen et al., 2020). Al-
though reports are not unanimous on this point, the beneficial consequences of AMF 
colonization regarding water stress seem to contribute not only towards a better 
mineral nutrition of plants, but encompass a more direct improvement of the plant 
water status. In addition, reduced levels of ABA and, accordingly, improved pho-
tosynthetic parameters have been described for above-ground parts of AMF plants 
(Ren et al., 2019). Given this context, it makes sense that root ABA is necessary for 
a sustained colonization by AMF. This might ensure that roots become colonized 

http://www.amf-phylogeny.com/
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particularly strongly when it is most needed (i.e., under water stress conditions, 
when ABA levels are high).

AMF produce changes in isoprenoids content in leaves of some plant species, 
favoring the production of essential instead of nonessential isoprenoids, especially 
in water stress conditions or after jasmonic acid applications (Karunanantham et al., 
2022). The increasing production of essential isoprenoids has been associated with 
the increasing demand and biosynthesis of compounds derived from carotenoids 
such as ABA and strigolactones in mycorrhizal plants under water-deficit conditions 
(Goyal et al., 2020). Contrasting effects have been observed for ABA concentrations 
in mycorrhizal plants exposed to water stress conditions, which reflects the com-
plexity of interactions. In some plant species, the beneficial effect of symbiosis with 
AMF under stress conditions has been attributed to increases of transpiration and 
water absorption by roots (Busso & Busso, 2022) and it is associated with lower 
concentrations of ABA (Torres et al., 2018). However, in some plant species, water 
stress has significantly increased the ABA content, with or without mycorrhizal 
colonization (Ouledali et al., 2019). It has been determined that, in water-deficit 
stress conditions, the symbiosis with AMF regulates the ABA content (Liang et al., 
2021). In fact, in some plant species, ABA increases the susceptibility of plants to 
AMF colonization and appears to play an important role in the development and 
functionality of arbuscules (Chareesri et al., 2020). 

Strigolactones correspond to a new class of plant hormones that regulate the 
architecture and reproductive development plants (Zwanenburg et al., 2016), but 
the function for which they were initially recognized for is the intermediation ca-
pacity in the mycorrhizal symbiosis process, where they act as a molecular signal 
in unfavorable conditions for plants (Goyal et al., 2020). One of the possible roles of 
ABA comes from its regulating effect on the strigolactone concentrations (Visentin 
et al., 2020). 

The biochemical and molecular responses to AMF colonization in host plants 
also include the activation of the jasmonic acid signal pathway (Bahadur et al., 2019). 
Particularly, jasmonic acid appears to be involved in the stress signal in mycorrhizal 
plants through an increase of ABA concentration (Wang et al., 2020). Gibberellic 
acids modulate arbuscule formation in a dose-dependent manner (Liao et al., 2018). 
The narrow relationship found between ABA and AMF colonization in water stress 
conditions, and the functionality of the arbuscules suggests that the association 
between AMF and some plants could be one strategy to deal with a water stress, 
probably regulated by the interaction of ABA with other hormones. 

There are involved a complex sequence of events and intracellular modifica-
tions in the fungal penetration and establishment in the host roots (Carotenuto et 
al., 2019). Compatibility between plant roots and AMF implies a clear and selec-
tive recognition by the plant host that distinguishes the beneficial effects of the 
AMF. The elucidation of the recognition mechanisms and molecules involved in 
the AMF interaction is the key to understanding the phenomenon of compatibility. 
Biochemical and morphogenetic events mediated by phytohormones during AMF 
formation have been suggested in this context, and certain roles for phytohormones 
have been suggested in AMF (Liao et al., 2018). In the colonization of a plant root by 
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AMF, that not only improves growth and stress tolerance of the whole plant, there 
have been implicated alterations in the homeostasis of plant hormones. There are a 
large number of publications showing that the levels of plant hormones like ABA, 
strigolactones, gibberellic acids, and auxin actually change upon the establishment 
of AMF (Liao et al., 2018; Bahadur et al., 2019). 

PHYTOHORMONES-INDUCED WATER STRESS TOLERANCE
IN MYCORRHIZAL HERBACEOUS AND OLIVE

(OLEA EUROPAEA) PLANTS

Some plant species evolved to avoid water stress whereas others adopted water stress 
tolerance strategies, like the olive (Kokkotos et al., 2020). In this respect, root coloni-
zation by AMF plays a crucial role in the response of plants to water stress (Bahadur 
et al., 2019). It allows an integrative water stress response combining avoidance and 
tolerance strategies (Rapparini & Peñuelas, 2014). 

A key factor in the response of olive trees to water stress is the presence of AMF 
in the soil (Calvo-Polanco et al., 2016). Under constraining conditions, mycorrhizas 
improve the resilience of plants against environmental stresses like water stress, 
AMF also improve the growth of olive trees and their resistance to transplantation 
stress (Bizos et al., 2020). Crucial factors to reach high productivity of olive trees is 
the enhancement of soil fertility and the fulfillment of its water requirements (Mer-
wad et al., 2015). This plant species is known for its strong tendency for alternate 
bearing, with higher yields produced every second year. This tendency is enhanced 
by low fertility, high temperatures and water stress (Kour et al., 2018). Ennajeh et 
al. (2006) reported various morphological and physiological traits involved in the 
plant resistance to water stress in the leaves of the olive cultivars ‘Meski’ (water 
stress sensitive) and ‘Chemalali’ (water stress tolerant). The relative water content 
(RWC), net photosynthesis rate and stomatal conductance decrease in the leaves of 
both cultivars by withholding irrigation. Since this decrease was greater in ‘Meski’ 
than in ‘Chemalali’, the former cultivar was more sensitive to water stress. Leaf tri-
chome and stomatal densities were higher in ‘Chemlali’ than in ‘Meski’. However, 
the desiccation curves were comparable when leaves of both cultivars were kept in 
the dark. This implied that the two varieties had similar leaf cuticle transpiration. 
Leaves of both cultivars accumulated soluble sugars and proline under severe water 
stress, possible for osmotic adjustment. Both cultivars showed the same levels of 
RWC at which soluble sugar concentrations started to increase and decline. However, 
more soluble sugars were accumulated by the leaves of the ’Meski’ variety. Lower 
soluble sugar and higher proline concentrations were determined on detached than 
attached leaves of ‘Chemlali’. The authors suggested that it was possible that solu-
ble sugars were diverted to proline synthesis in response to injury. The RWC levels 
at which proline accumulation started and ended were higher in ´Meski´ than in 
´Chemlali´. In the study of Ennajeh et al. (2006), high leaf trichome and stomatal 
densities and effective osmotic adjustment with proline may explain the greater 
water stress tolerance in ‘Chemlali’ than in ‘Meski’.
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The role of mycorrhizas in plants’ response to water stress has been well doc-
umented in olive trees (Calvo Polanco et al., 2016). The contribution of AMF to 
plants’ tolerance of water stress is partly due to the larger volume of soil explored 
by roots and the extra-radical hyphae (Zhang et al., 2016), and more efficient sto-
matal regulation by controlling the ABA metabolism (Torres et al., 2018). Bizos et 
al. (2020) reported that the AMF species Rhizophagus irregularis and Glomus mosseae 
stimulated the root growth improving the resistance of olive plants to environmental 
and transplantation stresses. However, Bompadre et al. (2014) inoculated olive plants 
with two strains of the AMF Rhizophagus irregularis (GC2 and GA5), which have dif-
ferent strategies of colonization in vitro and in soil conditions. The GC2 strain had a 
high density of external mycelium, slow growing at the beginning of in vitro culture 
which increase with the proportion of mycelium ramification, and few number of big 
spores (160.52±19.8 cm2; 87.4±0.4 µm) (Silvani, 2011). Its spores and mycelium are 
limited to the vicinity of the roots where the colonization takes place. In contrast, 
GA5 presents little external mycelium at the beginning of culture but then increases 
its density forming a mycelium little branched, has a higher growth rate, and its 
spores are smaller and more abundant than GC2 (293.4±81.8 cm2; 70.8±0.5 µm) 
(Silvani, 2011). In olive seedlings, AMF increase growth, nutrients uptake, and root 
hydraulic conductivity (Calvo-Polanco et al., 2016). They also help to reduce damage 
due to soil dryness by the activation of antioxidant defenses (Sepahvand et al., 2021). 
Under field conditions prevalent in semi-arid olive-growing areas in southwestern 
Argentina there might be fairly long periods of water stress interrupted by sporadic 
torrential rains of spring and summer. 

A wide variety of biotic and abiotic stresses needs to be overcome by plant 
species which affect their growth, development and production. Within the ma-
jor factors that will determine those parameters is water stress. Within the Phyto-
geographical Province of the southern ‘’Caldenal’’, in southwestern Argentina, are 
common, large oscillations in total annual rainfall and water stress episodes (Peláez 
et al., 2021). Olive orchards in this region includes water stress-tolerant cultivars. 
This is because they have morpho-anatomical adaptations and physiological and 
biochemical defense mechanisms (Ennajeh et al., 2006; Khabou et al., 2014). These 
olive cultivars differ in their water stress tolerance which can be exploited to improve 
their performance under water stress (Ennajeh et al., 2009). Mycorrhization has been 
evaluated as a promising biological approach to mitigate the impact of water stress 
on the productivity of olive trees. Several studies have shown that mycorrhiza have 
a large beneficial effect on several aspects of plant physiology like root growth and 
morphology (Jabborova et al., 2021). Chandrasekaran (2022) reported that mycorrhi-
zal inoculated plants were less affected by water deficiency than those non-inoculated 
through developing more root biomass. Their results highlight the importance of 
the production of mycorrhizal plants to alleviate the field water stress mainly in 
arid and semiarid areas. 

By modulating metabolic and physiological processes, plants adapt to their 
environment. They may interact with some organisms through symbiotic associa-
tions to allow this adaptation. The AMF symbiosis is beneficial for the plant under 
water stress conditions. AMF may influence the hormonal balance of the plant to 
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determine an integrated response to water stress. For example, the olive trees form 
beneficial associations with AMF (Ouledali et al., 2018). ABA is a major phytohor-
mone that can be induced by AMF colonization in water stress-stressed olive plants 
(Ouledali et al., 2019). The plant´s resistant to water stress is reinforced by AMF 
(Xu et al., 2018). 

The key phytohormone modeling the stomata behavior under water stress con-
ditions is ABA (Ouledali et al., 2019). However, Ouledali et al. (2019) reported that 
in AMF-inoculated plants of the olive cultivar ‘Zarrazi’, the ABA amount increased 
under moderate water stress and even further under water relief, but decreased under 
severe water stress. However, stomatal closure was not correlated with leaf ABA con-
tent in the study of Ouledali et al. (2019). The results of these authors showed that 
ABA is not the key factor controlling the stomatal closure in these AMF-inoculated 
olive plants under water stress conditions. They indicated that other AMF-related 
factors are involved in the control of stomata regulation in mycorrhizal olive plants 
exposed to severe water stress conditions, allowing a suitable stomata behavior.

In AMF-inoculated olive plants of the cultivar ‘Zarrazi’, water stress caused a 
decrease in conductance and leaf transpiration rate. Guard cells respond to various 
stimuli including plant hormones and elicitors (Agurla et al., 2017). The major plant 
hormone inducing stomatal closure is ABA (Ouledali et al., 2019). On the other 
hand, Hu et al. (2013) indicated that exogenous application of a synthetic cytokinin 
on Poa pratensis L. promoted stomatal reopening following drought-induced closure, 
leading to an enhanced stomatal conductance. Ren et al. (2019) reported that higher 
stomatal conductance rates are associated with lower ABA content in the leaves in 
mycorrhizal plants. In turn, Schmidt et al. (2017) reported that the arbuscular my-
corrhiza fungus Rhizophagus intraradices increased the concentrations of numerous 
citokinins in the leaves of the C4 perennial grass Miscanthus × giganteus J.M. Greef 
& Deuter. AMF-symbiosis can thus influence the production of ABA and cytokinins 
in roots exposed to dying soil to regulate stomatal opening and limit water loss (Hu 
et al., 2013; Schmidt et al., 2017; Ren et al., 2019). AMF-inoculated plants can reg-
ulate better their ABA level than AMF-non-inoculated plants (Ruiz-Lozano et al., 
2009). This results in a suitable balance between leaf transpiration and root water 
uptake during water stress. AMF-symbiosis could modulate the stomatal behavior 
through the regulation of the 14-3-3 genes in the ABA signaling pathway to improve 
water stress tolerance (Xu et al., 2018). Therefore, the results of Ouledali et al. (2019) 
suggest that AMF-inoculation of the olive cultivar ‘Zarrazi’ helped somehow to 
maintain transpiration and stomatal conductance in plants of that cultivar under 
water stress conditions. 

When water stress was moderate, and in the leaves of the AMF-inoculated 
olive plants of the cultivar ‘Zarrazi’, stomata closure was well correlated with ABA 
accumulation. Nevertheless, AMF-inoculated olive plants closed their stomata de-
spite the lower leaf ABA concentrations under severe water stress (Ouledali et al., 
2019). These authors suggested the eventual presence of an AMF-dependent signal 
replacing ABA in olive when dehydration is severe. The lower ABA concentration 
may be caused by a (1) negative feed-back exerted by the AMF-induced signal on 
the ABA-biosynthesis pathway, or (2) competition for a shared common precursor 
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between ABA and the signal. Parwez et al. (2022) reported the role of ABA in regu-
lation of different physiological mechanisms through integration of environmental 
cues via its positive and negative crosstalks with other phytohormones (like aux-
in, gibberellin, cytokinin, ethylene, salicylic acid, brassinosteroids, jasmonic acid, 
strigolactones, and melatonin). Munemasa et al. (2019) showed that the ethylene 
signaling inhibits jasmonate signaling as well as ABA signaling in guard cells of 
Arabidopsis thaliana, and revealed the signaling crosstalk mechanism. Both an eth-
ylene precursor 1-aminocyclopropane-1-carboxylic acid, and an ethylene-releasing 
compound ethephon, induced transient stomatal closure, and also inhibited methyl 
jasmonate-induced stomatal closure as well as ABA-induced stomatal closure. While 
the ethylene inhibition of methyl jasmonate-induced stomatal closure was abolished 
in the ethylene-insensitive mutant etr1–1, the methyl jasmonate-induced stomatal 
closure was impaired in the ethylene-overproducing mutant eto1–1 of Arabidopsis 
(Munemasa et al., 2019). 

Canales et al. (2021) explored the strategy set up by two oat cultivars to cope 
with drought based on root morphological, anatomical, physiological and molecular 
studies. These authors found a dramatic and rapid ABA increase in the susceptible 
genotype resulting in a tight and rapid reduction of stomatal conductance; despite 
this, leaf water potential decreased concomitantly due to a decrease in the root hy-
draulic conductivity. Contrarily, the resistant genotype, showed a mild and slow 
increase in ABA that allowed maintaining transpiration longer. They linked this 
response to an increase in root hydraulic conductance through an increase in total 
root length, in the length of the thinnest roots and a rise in root conductivity. Ren et 
al. (2019) reported that under water-stressed conditions, inoculation of Zea mays with 
Funneliformis mosseae greatly reduced leaf ABA content, and postponed the decline 
in photosynthetic rate, stomatal conductance and osmotic adjustment. Ouledali et al. 
(2019) informed that leaf transpiration rate and stomatal conductance became very 
low in the mycorrhizal olive cultivar Zarrazi, and reached zero in non-mycorrhizal 
plants, when dehydration became severe. Therefore, in this water stress tolerant 
cultivar, stomatal regulation was efficient (Ouledali et al., 2018). 

AMF symbiosis induces strigolactone biosynthesis under water stress and im-
proves water stress tolerance in lettuce and tomato (Ruiz-Lozano et al., 2016). Both 
being derives from carotenoids, strigolactones share their biosynthetic precursors 
with ABA (Stauder et al., 2018). ABA functions at multiple levels to regulate the 
symbiosis with AMF (Martín-Rodríguez et al., 2016). Liu et al. (2015) proposed that 
a transcriptionally regulated, early strigolactones decrease under osmotic stress is 
needed (but not sufficient) to allow the physiological increase of ABA in roots. Vis-
entin et al. (2016) in tomato showed that genetic strigolactone depletion may affect 
ABA concentration and stomatal sensitivity to ABA. Thus, stomatal regulation under 
water stress in olive could partially be modulated by an AMF-dependent interplay 
between ABA and strigolactones.

Formenti & Rasmann (2019) informed that the mechanisms of AM fungal-me-
diated increased resistance include a manipulation of the hormonal cascades, such 
as the systemic activation of jasmonic acid dependent defenses. AMF colonization 
of trifoliate orange (Poncirus trifoliata) by Funneliformis mosseae notably regulated the 
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changes in root phytohormone levels under drought conditions (Liu et al., 2017). 
This was by increasing the indole-3-acetic acid, ABA, methyl jasmonate, zeatin ribo-
side, and brassinosteroids concentrations (Liu et al., 2017). These results concluded 
that AMF enhanced drought tolerance in trifoliate orange through modulation of 
root phytohormones. Herrera-Medina et al. (2007) demonstrated that ABA contrib-
uted to the susceptibility of tomato to infection by AM fungi, and that it seems to 
play an important role in the development of the complete arbuscule and its func-
tionality. The narrow relationship found between ABA and AMF colonization under 
water stress conditions, and the functionality of the arbuscules, suggests that the 
association between AMF and some plants could be one strategy to deal with water 
stress, probably regulated by the interaction of ABA with other hormones. Liao et 
al. (2018) informed a new component of the ABA pathway, the Protein Phosphatase 
2A (PP2A) holoenzyme subunit, PP2AB’1. They reported that the positive effect of 
ABA on the AMF colonization, requires a Protein Phosphatase 2A (PP2A) holoen-
zyme subunit, PP2AB’1. Thus, ABA signaling appears to play an important positive 
role in AMF colonization, and this function is predominantly via the promotion of 
the PP2A haloenzyme complex. 

Ouledali et al. (2018) either inoculated or not one-year-old olive plants with 
AMF and exposed these plants to a 40-day-water stress period. They showed that 
mycorrhizal plants were less affected by water stress than non-mycorrhizal plants 
proving the involvement of the AMF in the alleviation of the water stress impact 
on olive tree. The turgor potential in mycorrhizal plants exhibited positive values 
during the whole treatment period, while it was negative in non-mycorrhizal plants 
mainly under severe stress intensity. Moreover, the stomatal function was less affect-
ed by water stress in mycorrhizal than in non-mycorrhizal plants. The maximum 
of mycorrhizas relative water stress alleviation rate (RDAR) was estimated to be 
40% for relative water content, 36% for the osmotic potential, 86% for turgor pres-
sure, 16% for stomatal conductance and 27% for leaf transpiration rate. The osmotic 
adjustment by proline was earlier in mycorrhizal than in non-mycorrhizal plants. 
The inoculation with AMF also improved the mineral uptake of K, N, Zn and Fe. 
After 40 days of water stress, mycorrhizal olive plants survived but non-mycorrhizal 
plants did not. Thus, inoculation of young olive trees with the AMF improved their 
resilience to drought.

CONCLUSION AND FUTURE CONSIDERATIONS

The tolerance of plants to water stress is increased by AMF. However, the symbiosis 
under environmental stresses have caused a complexity and diversity of responses. In 
turn, this have prevented the establishment of a clear mechanism and it appears to 
have different modulations according to the species of AMF, the plant species, and 
the conditions under which the symbiosis is set. The plant susceptibility to a water 
stress, and the effect that this one has on its physiology and metabolism because 
of the presence of an additional sink during a stress condition, cannot always be 
supported by the plant. This is another important component in the complexity of 
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this relationship. Therefore, it is likely that where the symbiosis quickly generates 
a benefit for the plant, the symbiotic association is advantageous, only under expo-
sure to a mild or moderate water stress. For many mycorrhizal plants, it has been 
confirmed an increase in water stress tolerance as a consequence of multiple-level 
controlled mechanisms. This indicates that a more holistic approach is required to 
understand this phenomenon. 

To cope with water stress, novel and dynamic approaches are currently desir-
able; thereby, engineering genes responsible for phytohormones synthesis could be 
a great approach to maintain and improve the productivity. 

So far little progress has been made at the molecular level to understand the 
mechanisms of this miraculous organism which include the involvement of aquapo-
rins, some binding protein genes (BiPs), mitogen-activated protein kinase (MAPK) 
pathway genes, and stress responsive genes like proline dehydrogenase, invertase, 
proline synthetase, etc. However, with the advancement of new age molecular tech-
niques it seems possible that the unravelling of this mystery is not far away.
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