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Resumen
Tradicionalmente, la estimación del sexo en cráneos humanos se ha llevado a cabo 
aplicando enfoques no métricos y de distancias entre hitos. Dicha estimación ha me-
jorado sustancialmente con la introducción del registro morfométrico geométrico 
basado en semi-hitos, lo que representa una herramienta útil para capturar la com-
pleja morfología de las superficies 3D, particularmente la del cráneo humano. Con-
siderando estos avances, el objetivo principal de este estudio es mostrar la utilidad 
de estas técnicas para evaluar mediante un enfoque cuantitativo con contrastación 
de hipótesis la expresión fenotípica diferencial del dimorfismo sexual en los rasgos 
craneales humanos, utilizando el hueso frontal, la apófisis mastoides del hueso tem-
poral y el hueso cigomático como referentes. Según nuestros principales resultados: 
i) la exactitud y precisión de la estimación del sexo es mayor cuando se incluyen los 
componentes de la forma en los análisis que cuando no se hace; ii) la clasificación 
numérica resulta con mayores aciertos en los hombres que en las mujeres, tanto para 
los componentes de forma como de tamaño del dimorfismo sexual; y iii) uno o dos 
rasgos combinados arrojan mejores resultados en la clasificación numérica del sexo 
que los tres rasgos tomados en conjunto. La introducción en el presente estudio de 
un enfoque basado en semi-hitos de superficie para evaluar cuantitativamente el di-
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2SEMILANDMARK ASSESSMENT OF CRANIAL SEXUAL DIMORPHISM

morfismo sexual en el cráneo humano corrobora la importancia de la información 
aportada por la superficie del hueso frontal, la apófisis mastoides y el hueso cigomá-
tico, lo cual mejora considerablemente, de este modo, la estimación del dimorfismo 
sexual. Nuestros resultados sugieren que los componentes de forma y tamaño debe-
rían considerarse como factores relevantes para realizar una estimación del sexo en 
cráneos humanos de carácter diferencial y ponderada por el tipo de hueso. Rev Arg 
Antrop Biol 25(2), 2023. https://doi.org/10.24215/18536387e068

Palabras Clave: dimorfismo sexual; rasgos craneales; morfometría geométrica; semi-
hitos de superficie 3D

Abstract
Traditionally, sex estimation in human skulls has been carried out applying non-metric 
and inter-landmark distance approaches. Such estimation has substantially improved 
with the introduction of geometric morphometric semilandmark-based registration, 
representing a useful tool for capturing the complex morphology of 3D surfaces, par-
ticularly in human skulls. Taking in account these improvements, the main purpose 
of this study is to show the benefits of these techniques for assessing by means of a 
quantitative, hypothesis testing approach the differential phenotypic expression of 
sexual dimorphism in human cranial traits, using the frontal bone, the mastoid pro-
cess of the temporal bone, and the zygomatic bone as proxies. According to our main 
results: i) accuracy and precision of sex estimation is higher when the shape variable 
is included in the analysis than when it is not, ii) numerical classification tends to be 
more accurate in males than in females for both shape and size components of sexual 
dimorphism, and iii) a single trait or two traits in combination would be more suc-
cessful in sex classification than the three traits taken as a whole. The introduction in 
the present study of a surface semilandmark-based approach for quantitatively asses-
sing sexual dimorphism in human skull considerably improves the capture of sexual 
dimorphic signatures, corroborating the importance of the information carried by the 
surface of the frontal bone, mastoid process, and zygomatic bone. Our results suggest 
that shape and size components should be considered as relevant factors in making 
a differential, bone-dependent sex assessment in human crania. Rev Arg Antrop Biol 
25(2), 2023. https://doi.org/10.24215/18536387e068

Keywords: sexual dimorphism; cranial trait; geometric morphometrics; 3D surface se-
milandmarks

Traditionally, to estimate sexual dimorphism in skeletal remains physical anthropo-
logists apply metric and non-metric methods (DiGangi & Moore, 2013). While traditio-
nal metric methods are based on inter-landmark distances, non-metric methods involve 
visual and physical assessments by assigning a score on an ordinal scale representing 
the intensity of the phenotypic expression of the trait (i.e. “hyper feminine”, “feminine”, 
“undetermined”, “masculine”, “hypermasculine”) (Ubelaker & Buikstra, 1994; Walker, 2008). 
Despite their popularity due to their relatively easy and quick implementation, as well as 
to the existence of an alternative to the parametric statistics battery of tests for hypothe-
sis testing (i.e. Mann-Whitney U test instead of the t-test for independent samples, the 
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Kruskal-Wallis test instead of ANOVA, the Spearman’s rank correlation instead of Pearson’s 
correlation etc.), these methods present two major problems. First, and like the traditio-
nal metric methods, the non-metric methods cannot assess either of the shape and size 
components of dimorphic sexual variation separately (Slice, 2007; Zelditch et al., 2012). 
Secondly, non-metric methods calculate intra-inter-observer error based on subjective 
instead of objective criteria (Lewis & Garvin, 2016; Walrath et al., 2004; Williams & Rogers, 
2006), summarized by the classical “gracility” and “robusticity” conditions for distinguis-
hing, respectively, female versus male secondary sexual phenotypes, but also sedentary 
versus hunter-gatherer lifestyles (for an example of the first, see Carlson et al., 2007; for 
a critique of the second, see Püschel, 2013). Third, because of the ranked nature of their 
raw data, at equal sample sizes the non-metric methods compared to the metric methods 
generally show a lower statistical power. Additionally, regarding the use of cranial traits 
for assessing overall sexual dimorphism, the relative better preservation and larger repre-
sentation of skull in archaeological and current osteological collections biases sex deter-
mination due to its higher variability and selective neutral nature compared, for example, 
to more reliable structures for assessing sex determination like the pelvic bone (rev. Wal-
rath et al., 2004). In this context, the lower sensibility of non-metric methods compared 
to metric methods may have a negative effect on the precision of the sexual dimorphism 
assessment.

In the last decades geometric morphometrics (GM) has proven to be a powerful tool 
for studying shape and size variation of human populations allowing hypothesis testing 
on the effect of bioanthropological variables such as sex, age, population, and ancestry, 
among many other (Adams et al., 2004; Baylac & Frieß, 2006; Rohlf & Marcus, 1993; Weber, 
2015). GM uses landmark coordinates as raw data with Procrustes superimposition for 
removing the effects of rotation, translation and scale (rev. Zelditch et al., 2012). Although 
early works applying GM for assessing sexual dimorphism in the human skull improved 
the accuracy of sex estimation, they were not able to register the information contained 
in the curved surfaces of the cranial morphology (Franklin et al., 2006; Green & Curnoe, 
2009; Kimmerle et al., 2008; Pretorius et al., 2006; Rosas & Bastir, 2002), Thus, landmark-ba-
sed GM methods have limitations in representing organismal morphology due to the use 
of discrete points for comparisons across individuals. First, the number of these points is 
limited by the presence of features in the anatomical structure under study which literally 
must be evident and should be defined unambiguously as landmarks type I, (i.e. discrete 
juxtapositions of tissues like a suture formed by the joint of two or more bones) or type 
II (i.e. points of application of biomechanical forces like the imprinting left by a muscular 
force onto the surface of a bone during development) according to the Bookstein’s (1991) 
classical definition. Consequently, when studying subtle shape variations (e.g., curve and 
surface information) or major sources of morphological differences that are not charac-
terized by existing landmarks, the representation of morphology becomes increasingly 
poor. Second, as it seems obvious, landmark data fail to capture the shape existing bet-
ween landmarks, resulting in the loss of significant morphological information.

In order to overcome these deficiencies, during the last decade different morphome-
tric solutions have been developed, greatly improving the description and analysis of 
shape and size differences of skeletal structures like those presenting sexual dimorphism 
in the human skull (Bigoni et al., 2010; Chovalopoulou et al., 2016; del Bove et al., 2020; 
Garvin, 2012; Gonzalez et al., 2011; Jung & Woo, 2016; Schlager & Rüdell, 2017), having 
high accuracy rates for the zygomatic (78-89%) (Schlager & Rüdell, 2017), the mastoid 
process of the temporal bone (82-84%) (Jung & Woo, 2016) (Jung & Woo, 2016), and the 
frontal bone (85%) (del Bove et al., 2020). 
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The solutions implemented in the last decade for improving the registering of high-
resolution 3D specimens include pseudo-landmark (Boyer et al., 2011, 2015), landmark-
free methods (Pomidor et al., 2016), and sliding surface semilandmarks, being the last 
specially designed, in combination with true landmarks, for capturing shape along curves 
and surfaces (Gunz et al., 2005; Gunz & Mitteroecker, 2013). Regarding the 3D surface 
semilandmarks approach, this procedure involves the manual placement of anatomical 
landmarks, curve and surface sliding semilandmarks onto individuals, and subsequently 
the semi-automatic projection of surface points onto a target mesh. In this sense, com-
pared to pseudo-landmark and landmark-free methods, this semi-automated approach 
allows for proper projection monitoring of surface points onto a target mesh. Thus, the 
combination of landmarks, curve and surface semilandmarks represents a useful tool for 
capturing the complex morphology of 3D surfaces, particularly for the study of sexual 
dimorphism in human skulls (del Bove et al., 2020). 

Taking in account the improvements made by using 3D landmark and surface semi-
landmark techniques for estimating sexual dimorphism in cranial traits, the main purpose 
of this study is to show the benefits of these techniques for assessing -through a quanti-
tative, statistically contrasted approach- the differential phenotypic expressions of sexual 
dimorphism in human cranial traits, using the frontal bone, the mastoid process of the 
temporal bone, and the zygomatic bone as proxies, contributing to overcome the limi-
tations of the nonmetric approaches for assessing cranial sexual dimorphism. According 
to our hypothesis, the pattern of cranial bone shape variation has a differential phenoty-
pic expression both at the intra- (same sex, different traits), as well as at the intergroup 
(different sex, same and/or different traits) levels. This hypothesis will be tested using: 
i) as material, 3D models of frontal bone, zygomatic bone, and the mastoid process of 
the temporal bone obtained from a sample of crania belonging to modern remains from 
Santiago de Chile, ii) as raw data, landmarks and surface semilandmarks 3D coordinates, 
and iii) as an analytical tool, the standard pipeline of GM methods improved for 3D data 
by freeware packages for R environments available in R repositories.

MATERIALS AND METHODS

Sample

The sample consisted of 258 bones belonging to the skulls of 43 females (51.9 ± 17.5 
years old/min = 22, max = 88/) and 43 males (50.5 ± 16.4 years old/min = 27, max = 85/) 
(t test for equal age means: t = 0.3747, p (same age mean) = 0.7089) housed at the Colec-
ción Osteológica Subactual de Santiago (COSS), a documented skeletal collection of the 
Department of Anthropology of Universidad de Chile (Barreaux et al., 2015), consisting at 
the present time of 1,635 individuals buried in short-term graves living in low socioeco-
nomic areas of the capital during the late 19th and early 20th centuries, where biological 
sex and age-at-death has been documented through burial records for 1,198 individuals 
(41.1% females vs. 58.9% males) (Meza-Escobar et al., 2023). Our sample is representative 
of these individuals, both in terms of sex ratio, average age per sex, presenting a relati-
vely homogeneous genetic background due to the socioeconomic assortative mating, 
characteristic of the low income population of Santiago de Chile in the 70s (Valenzuela 
& Harb, 1977). 

The respective 3D models were obtained using the NextEngine 3D laser scanner, after 
trimming, aligning and fusing the mesh surfaces representing the respective bone struc-
ture with Scanstudio version 2.0.2 software (Shape Tools LCC and NextEngine inc.). Prior 
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to carry out the assessment, each model was cleaned, centred, smoothed and converted 
to a valid R environment format (R Core Team., 2008). Furthermore, in order to determine 
the minimum sample size for each trait we followed Rodríguez (2018), applying a MANO-
VA Global effects (α err prob = 0.05, statistical power = 0.8) using G*Power software (Faul 
et al., 2007) for assessing the sample size of frontal bone (n = 18, Pillai trace V = 0.4), the 
mastoid process (n = 18, Pillai trace V = 0.41), and the zygomatic bone (n = 18, Pillai trace 
V = 0.43).

Data acquisition

19 fixed landmarks after Del Bove et al. (2020), Díaz-Jarufe (2010) and Martin (1914) 
(Supplemental Table S1) were registered on each individual by a unique observer (Author 
1) using Stratovan Chekpoint software (Stratovan Corporation, 2018). In order to obtain a 
reference template for each trait, the following actions were carried out using a 19 fixed 
landmark configuration: i) a GPA and the “findMeanSpec” function available in the Geo-
morph R package (Adams & Otárola-Castillo, 2013) was applied for finding the closest to 
the average morphology individual, ii) the fixed landmarks and surface semilandmarks 
were manually placed onto the corresponding average individual by the same observer 
using Stratovan Chekpoint software, iii) finally, the template’s mesh, fixed landmarks, and 
surface points were all imported into R environment to create a reference template by 
trait using “createAtlas” function in Morpho R package (Schlager et al., 2018).

For this study, the lower portion of the frontal bone (i.e., glabella and supra orbital rid-
ge) was used because the glabella and the supra orbital ridge are the most used sexually 
dimorphic traits within the frontal bone (del Bove et al., 2020; Walker, 2008). Considering 
this fact, it was recorded by 28 semilandmarks. The mastoid process and zygomatic bone 
were defined by 29 and 25 semilandmarks, respectively (Fig. 1).

In each individual, the patching procedure, involving the semi-automatically projec-
tion of surface points onto each mesh through reference template was applied (Bardua 
et al., 2019; Schlager, 2017) by the “placePatch” function in the Morpho R package. Subse-
quently, in order to minimise the bending energy of the thin plate spline deformation, the 
sliding procedure was applied (Schlager, 2017) using the “slider3d” function available in 
the Morpho R package. Finally, the average distance between semilandmarks (correspon-
ding to the 10 closest semilandmarks) was calculated on the respective consensus shape 
(0.08 ± 0.01 mm in the frontal bone; 0.11 ± 0.03 mm in the mastoid process and 0.11 ± 
0.03 mm in the zygomatic bone).
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FIGURE 1. Landmark and semilandmark configurations used in this study. In red anatomical land-
marks, in blue surface semilandmarks. The traits tested are a) frontal bone, b) mastoid process and c) 
zygomatic bone.
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Analyses

To eliminate differences due to rotation, scale and translation, a GPA was performed 
on the combined configuration of landmarks and surface semilandmarks of the three 
landmark and surface semilandmark configurations considered in the present study. 

Then, the aligned coordinates representing each trait were projected as points to a 
two- dimensional shape space formed by pairs of the PCs having a sexual dimorphic sig-
nal (see below). The influence of sex and size on the shape variation of each trait was 
evaluated after a Procrustes ANOVA available in the geomorph R package using as size 
estimator for each trait its centroid size, i.e. the square root of the sum of squared distan-
ces of a set of landmarks (and semilandmarks if applicable) from their centroid. It is worth 
mentioning that, in the absence of allometric effects, centroid size is uncorrelated with 
the set of shape components (PCs).

To assess the reliability of the traits in estimating sex, a linear discriminant analysis 
with leave-one-out cross-validation (LDA) was carried out. The PC scores (overall shape 
information) and centroid size were used as dependent variables, considering sex as the 
independent variable. Afterwards, the accuracy (80% or more correct classifications of 
each sex) and precision (80% or more of true positives for each sex) of the model was 
calculated using a bootstrap procedure design (1,000 iterations). In each iteration, 80 in-
dividuals were randomly sampled. At the end of this iterative procedure, the mean and 
confidence interval (alpha = 0.05) of the model's accuracy and precision were calculated. 

The pattern of shape variation regarding sex was assessed using PCs, exhibiting se-
xual dimorphic signal, whose statistical significance was tested after a Student's t-test, 
following del Bove et al. (2020), and the Procrustes distances between the consensus fe-
male and male configurations. The sex differences in centroid size were analysed using 
Procrustes ANOVA. Finally, for testing allometry, a regression model was applied onto 
centroid size and significant PCs vectors using PAST software (Hammer et al., 2001).

RESULTS

Assessment of sexual dimorphism

The variables sex and size showed a statistically significant association with the land-
mark coordinate data of the three traits separately and as a whole, without a significant 
interaction among these variables (Table 1). Depending on the variable used, accuracy 

R2 (sex)
Z-score 

(sex)
p-value 

(sex)
R2 (size)

Z-score 
(size)

p-value 
(size)

R2 
(sex*size)

Z-score 
(sex*size)

p-value 
(sex*size)

All 0.0141 18,621 0.022 0.7749 50,594 0.001 0.0030 0,6892 0.283

Frontal 0.0453 32,933 0.002 0.0352 27,257 0.003 0.0242 18,423 0.038

Mastoid 0.0802 45,850 0.001 0.0617 39,939 0.001 0.0095 0,1370 0.443

Zygomatic 0.0256 21,117 0.016 0.0915 49,656 0.001 0.0096 0,0217 0.489

Frontal + Mastoid 0.0155 18,398 0.029 0.7286 46,268 0.001 0.0031 0,4743 0.326

Frontal + Zygomatic 0.0145 27,441 0.001 0.9219 74,686 0.001 0.0004 -0,4273 0.654

Mastoid + Zygomatic 0.0532 42,953 0.001 0.0376 33,129 0.001 0.0146 0,9214 0.171

TABLE 1. Level of association (R2), Z-score, and p-value of the Procrustes ANOVA effects of the inde-
pendent variables analysed in this study.
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and precision of sex estimation were higher when the shape variable was included in 

the analysis than when it was not (Table 2), and the successful classification tended to 

be more accurate in males than in females for both variables (i.e., LDA for shape and size 

components). Additionally, the phenotypic traits showing the high expression of dimor-

phic signal were frontal, and zygomatic bones, followed by the mastoid process (Table 

2). Regarding accuracy and precision of centroid size, the mastoid process showed the 

highest values for both estimates.

Shape

Accuracy mean  
(95% CI)

Precision Female mean 
(95% CI)

Precision Male mean 
(95% CI)

All 0.7663 (0.7624-0.7701) 0.7581 (0.7535-0.7626) 0.7722 (0.7679-0.7765)

Frontal 0.8747 (0.8719-0.8776) 0.8564 (0.8530-0.8598) 0.8957 (0.8925-0.8989)

Mastoid 0.7951 (0.7918-0.7984) 0.7880 (0.7842-0.7919) 0.8016 (0.7976-0.8055)

Zygomatic 0.8534 (0.8504-0.8564) 0.8524 (0.8488-0.8560) 0.8542 (0.8507-0.8577)

Frontal + Mastoid 0.7867 (0.7830-0.7904) 0.7807 (0.7765-0.7850) 0.7915 (0.7872-0.7958)

Frontal + Zygomatic 0.6786 (0.6741-0.6830) 0.6706 (0.6654-0.6757) 0.6807 (0.6757-0.6856)

Mastoid + Zygomatic 0.8764 (0.8739-0.8789) 0.8673 (0.8642-0.8703) 0.8864 (0.8834-0.8893)

Size

Accuracy mean  
(95% CI)

Precision Female mean 
(95% CI)

Precision Male mean 
(95% CI)

All 0.5990 (0.5950-0.6029) 0.5925 (0.5879-0.5970) 0.5985 (0.5935-0.6035)

Frontal 0.7002 (0.6970-0.7034) 0.6863 (0.6825-0.6900) 0.7113 (0.7077-0.7150)

Mastoid 0.7856 (0.7826-0.7886) 0.7720 (0.7685-0.7756) 0.7972 (0.7932-0.8011)

Zygomatic 0.7243 (0.7211-0.7275) 0.7288 (0.7252-0.7323) 0.7160 (0.7123-0.7197)

Frontal + Mastoid 0.6040 (0.6000-0.6079) 0.5958 (0.5915-0.6002) 0.6050 (0.5997-0.6102)

Frontal + Zygomatic 0.5725 (0.5692-0.5758) 0.5410 (0.5323-0.5497) 0.5491 (0.5405-0.5577)

Mastoid + Zygomatic 0.7902 (0.7873-0.7931) 0.7866 (0.7834-0.7899) 0.7951 (0.7917-0.7985)

Mastoid + Zygomatic 0.7902 (0.7873-0.7931) 0.7866 (0.7834-0.7899) 0.7951 (0.7917-0.7985)

Mastoid + Zygomatic 0.7902 (0.7873-0.7931) 0.7866 (0.7834-0.7899) 0.7951 (0.7917-0.7985)

TABLE 2. Precision and Accuracy (expressed as a ratio) calculated on the traits and their combinations 
in classifying sex by “shape” and “size” variables.

Shape variation

The general pattern of shape variation of the traits under study was associated with 

the expansion/contraction of the surface of each trait. The pattern of shape variation of 

the female frontal bone was characterised by a vertically expanded and horizontally con-

tracted frontal bone, while male frontal bone was contracted and expanded, respecti-

vely. As a result, females showed a vertically elongated phenotype, while males showed 

a protruded one (Fig. 2). In this analysis shape components PC2, PC3, PC6 and PC13 were 

considered (Supplemental Information, Fig. S1), accounting for 15.11%, 14.48%, 4.48% 

and 1.20% of the explained overall variance respectively. Concerning the mastoid pro-

cess of the temporal bone, females were characterised by a horizontal expansion and a 

vertical contraction of the mastoid, resulting in an inward appearance. In contrast, shape 

variation in males was associated with a horizontal contraction and a vertical expansion, 

resulting in a vertically sharp appearance (Fig. 2). This structure showed the highest value 

of Procrustes distances among sexes compared to frontal (middle value) and zygomatic 
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FIGURE 2. Shape variation of the consensus configurations of each trait per sex. a) frontal bone, b) 
mastoid process and c) zygomatic bone. Procrustes distance (radians).

bones (lowest value). In this case, the shape components PC1, PC2 and PC9 were used 
(Supplemental Information, Fig. S2), accounting for 26.83%, 23.84% and 1.20% of the ex-
plained overall variance respectively. Finally, as for the zygomatic bone, it mainly showed 
shape variation in its body portion. Females were characterised by a vertical expansion 
and a horizontal contraction resulting in an elongated appearance. In contrast, males 
were associated with a vertical contraction and a horizontal expansion, resulting in a flat-
tened appearance (Fig. 2). For the analysis of this bone the shape components PC6, PC8 
and PC12 were considered (Supplemental Information, Fig. S3), accounting for 4.32%, 
2.66% and 1.49% of the overall explained variance.

Size variation and allometry testing

Regarding size variation, significant differences for the studied traits in centroid size 
between females and males were found, and as expected, females had a lower centroid 
size value compared to males in the three traits, being the mastoid process the more di-
morphic regarding sex (Fig. 3; Table 1).

In order to determine how cranial size affects shape, allometry was tested through the 
least squares regression of the set of significant PCs of each bone onto the centroid size 
vector (Csize) of the same bone. As a result, the mastoid process showed a significant allo-
metric effect explained by the PC1/Csize (y = -0.0038x + 0.3109, r = -0.488, p = 1.86E-06) 
and PC2/Csize (y = 0.0034x – 0.2768, r = 0.437, p = 0.04195) regressions, corresponding to 
50.7% of the overall variance (i.e. PC1 + PC2). The frontal bone presented a moderate allo-
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metric effect (PC2/Csize: y = -2.78E-05x + 0.0032, r = -0.007, p = 0.9496, and PC3/Csize: y = 
0.0019x + -0.2155, r = 0.482, p = 2.65E-06), corresponding to 14.5% of the overall variance, 
while the zygomatic bone, although presenting a significant allometric effect (PC6/Csize: 
y = 0.0012x + -0.1048, r = 0.309, p = 00381), corresponded only to 4.3% of the overall va-
riance. These results are in agreement with the pattern observed for shape and centroid 
size variation when these components of bone form variation were analized separately.

FIGURE 3. Centroid size values for each trait considered in this study.

DISCUSSION

In the present study the phenotypic expression of sexual dimorphism in three hu-
man cranial traits (i.e. frontal, zygomatic bones, and mastoid process of the temporal 
bone) was assessed applying a standard geometric morphometrics pipeline using 3D 
landmarking and surface semilandmarking. Our results show that the three traits present 
statistically significant signals of sexual dimorphism, for both shape and centroid size. 
Regarding shape, frontal and zygomatic bones are particularly relevant for detecting sex 
differences in the human skull. These differences are mainly expressed in a pattern of 
expansion/contraction of the surface of each trait. It is worth mentioning that both the 
zygomatic and the mastoid process of the temporal bone had not been previously consi-
dered for assessing sexual dimorphism in human skulls applying geometric morphome-
trics pipeline, neither when using semilandmarks for 3D data (del Bove et al., 2020), nor 
pre semilandmark techniques, such as pseudo landmarks (Schlager & Rüdell, 2017) and 
2D semilandmark approaches (Jung & Woo, 2016).

One of the main problems of traditional quantitative methods for assessing sexual 
dimorphism in human skulls is the assumption that different traits would have the same 

https://doi.org/10.24215/18536387e068
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relative weight (Walker, 2008). Although this assumption entails high accuracy rates, it 
does not consider anatomically intrinsic inter trait variation, like the one observed in the 
present study between frontal and zygomatic bones. When this variation is taken into 
account, the latter bone achieves similar accuracy rates than the frontal bone.

In relation to the frontal bone, our results corroborate those obtained when using the 
semilandmark approach for 3D data (del Bove et al., 2020) as well as the inter-landmark 
distances of traditional morphometrics (Perlaza, 2014; Petaros et al., 2017). According to 
these studies, female supraorbital ridges are slightly expanded in the transverse plane 
compared to male ridges, while the female glabella is expanded both horizontally and 
vertically compared to the protruded appearance that it has in males. Moreover, it has 
been reported that supraorbital ridges in males tend to occupy a larger surface area com-
pared to their relatively flat appearance in females (Garvin & Ruff, 2012; Petaros et al., 
2017; Shearer et al., 2012).

Regarding the zygomatic bone, our findings are similar to those of Schlager & Rüdell 
(2017). After using densely sampled pseudo landmarks, these authors observed that the 
lower part of the zygomatic bone in males is more expanded in the transverse plane com-
pared to females, which in turn have a more prominent orbital margin. Thus, the signal of 
the phenotypic expression of sexual dimorphism of the zygomatic bone is high enough 
to be recorded by techniques which the mentioned authors consider antagonistic (i.e. 
pseudo- vs. semilandmark approaches) (Schlager & Rüdell, 2017).

In relation to the mastoid process shape variation, its projection in the transverse 
plane tended to be more reduced in females compared to males, resulting in a vertical-
sharp appearance in the latter. These results agree with those obtained by Jung & Woo 
(2016) when using semilandmarks, and by Rosas & Bastir (2002), and Suazo et al., (2008) 
after applying inter-landmark distances of traditional morphometrics (Rosas & Bastir, 
2002; Suazo Galdames et al., 2008). Furthermore, in the present study the mastoid pro-
cess showed the highest allometric effect compared to the frontal and zygomatic bones, 
corroborating the results obtained in sub-adult and adult archaeological populations of 
South America characterized by a notorious robusticity of those same bones (González et 
al., 2010). Interestingly, these last results taken together suggest that the terms “robustici-
ty” and “gracility” when applied in a bioanthropological context could be associated with 
shape changes that have a strong size signal.

Regarding the frontal and zygomatic bones, shape variation was more influential than 
size variation in sex classification, corroborating that the size variable should be treated 
with caution in sexing osteological collections when using at least, the above mentio-
ned traits. Additionally, our findings indicate that a single or two traits in combination 
would be more successful in sex classification than the three traits taken as a whole. This 
is explained by the fact that, due to the variable condition of every osteological trait as 
well as to the hierarchical and decreasing nature of the variance explained by the set of 
shape components (PC1 > PC2 > ... PCn), when analysing three (or more) of these traits, 
it is highly probable to have a pair of them presenting a stronger dimorphic signal when 
compared with the third (the rest) of traits.

In order to have a more complete picture of the differential expression of sexual di-
morphism in the human skull, further studies based on the GMM approach using semi-
landmarks should include characters such as the nuchal crest and the mental eminence, 
among others.

In summary, the landmark surface semilandmark based geometric morphometric ap-
proach allows to capture the relevant information carried by each trait separately, making 
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it possible to investigate in detail the contribution of variation in both shape and size to 
the expression of sexual dimorphism.

Regarding the limitations of our study, although we used del Bove's (2020) work as 
a reference to determine the number of surface points required to capture frontal bone 
morphology, at present there are no studies that provide guidance on the optimal num-
ber of surface points required for capturing the morphology of mastoid process and 
zygomatic bone. While it is currently not possible to determine a priori how many surface 
points are necessary to fully capture the shape variation, we chose a number of points 
that allowed us to capture the complexity and size of each trait, without over-represen-
ting any particular region. In this sense, over-representing a region could result in some 
surface points falling outside the area of interest, and could also increase the dimensio-
nality of the dataset, potentially reducing the power of subsequent analyses as pointed 
out in previous studies (Bardua et al., 2019; Watanabe, 2018). Therefore, we suggest that 
our study should be consider as a starting point for further studies.

CONCLUSION

The introduction in the present study of a landmark surface semilandmark based ap-
proach for quantitatively assessing sexual dimorphism in human skulls corroborates the 
importance of the information carried by the surface of the frontal bone, mastoid process 
and zygomatic bone, considerably improving this way the capture of sexual dimorphic 
signatures, suggesting that shape and size components should be considered as relevant 
factors for making a differential, bone dependent sex assessment in human crania. Addi-
tionally, our findings indicate that a single or two traits in combination would be more 
successful in sex classification than the three traits taken as a whole.
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