Reverse Electrical Remodeling in Patients Under Cardiac Resynchronization Therapy

Remodelado eléctrico reverso en pacientes tratados con terapia de resincronización cardíaca

JOAQUÍN VÁZQUEZ1, FEDERICO FERRANDO1, SOLEDAD MURGUIA1, JOSÉ ICHAZO1, NATALIA ESCOBAR1, ALEJANDRO CUESTA1, ÁLVARO RIVARA1, DIEGO FREIRE1

ABSTRACT

Background: Cardiac resynchronization therapy (CRT) is indicated in patients who often present cardiac remodeling due to dilatation and contractile dysynchrony. CRT contributes to reverse remodeling which is associated with reduced mortality and heart failure (HF) hospitalizations. Improvements in intraventricular conduction with decreased ventricular activation time have also been observed. The quantification of reverse electrical remodeling has been underused as a parameter of response, and there are few reports on its association with the clinical-structural response.

Objective: To analyze intraventricular reverse electrical remodeling as a parameter of response to CRT in living individuals.

Methods: We included patients implanted at least 6 months ago. A deactivated stimulation ECG (post-CRT intrinsic QRS, iQRS) was obtained, and by means of transthoracic echocardiography (TTE), the left ventricular ejection fraction (LVEF), the left ventricular end-diastolic diameter (LVEDD) and the presence of mitral regurgitation were defined. Patients were classified according to their clinical-structural response. Electrical remodeling was characterized by comparing pre- and post-CRT QRS duration and assessing QRS changes (ΔiQRS) between groups.

Results: A total of 23 patients were included, 39% of which showed a >10 msec decrease in iQRS. We observed a ΔiQRS of -9.3±20.7 msec in responders, and 11.25±18.9 msec in non-responders (p=0.027), more marked in hyper-responders (ΔiQRS: -14.44±17.40 msec, p=0.026). Women with pre-CRT QRS ≥150 msec showed a significant decrease in iQRS (p=0.0195).

Conclusion: Reverse electrical remodeling was found in 39% of the patients under CRT. We noted a significant relationship between ΔiQRS and clinical-structural response, higher in hyper-responders. Women with wider pre-CRT QRS showed more marked reverse electrical remodeling. This parameter is accessible and easy to read in outpatient visits.

Keywords: Cardiac resynchronization therapy, response, reverse electrical remodeling.

RESUMEN

Introducción: La terapia de resincronización cardíaca (TRC) se indica en pacientes que habitualmente presentan remodelado cardíaco generado por dilatación y disincronía contratáctil. La TRC contribuye al remodelado reverso, relacionado con menor mortalidad y hospitalizaciones por insuficiencia cardíaca (IC). Se han observado además mejoras en la conducción intraventricular, con reducción del tiempo de activación. La cuantificación del remodelado eléctrico reverso se ha subutilizado como parámetro de respuesta, con escasos reportes sobre su asociación con la respuesta clínica-estructural.

Objetivo: Analizar el remodelado eléctrico reverso intraventricular como parámetro de respuesta a la TRC.

Material y Métodos: Se incluyeron pacientes con más de 6 meses de implante. Se obtuvo un ECG con estimulación desactivada (QRS intrínseco, QRSi, post-TRC), y por ecocardiograma transtorácico se definió la fracción de eyeccción ventricular izquierda (FEVI), el diámetro de fin de diástole del ventrículo izquierdo (DFDVI) y la presencia de insuficiencia mitral. Se clasificó a los pacientes según su respuesta clínica-estructural. El remodelado eléctrico se caracterizó con la comparación de la duración del QRS pre-y post-TRC y la valoración de los cambios del QRS (ΔQRSi) entre grupos.

Resultados: Se incluyeron 23 pacientes. Un 39% presentó disminución >10 mseg del QRSi. Observamos un ΔQRSi de -9.3±20.7 mseg en respondedores, y 11.25±18.9 mseg en no respondedores (p=0.027), más acentuada en los hiper respondedores (ΔQRSi: -14.44±17.40 mseg, p=0.026). Las mujeres con QRSi ≥150 mseg pre TRC exhibieron disminución significativa del QRSi (p=0.0195).

Conclusiones: El remodelado eléctrico reverso se comprimió en 39% de los pacientes que recibieron TRC. Observamos una relación significativa del ΔQRSi con la respuesta clínica-estructural, mayor en hiper respondedores. Mujeres con QRSi ancho pre-TRC exhiben remodelado eléctrico reverso más acentuado. Este es un parámetro de fácil acceso e interpretación durante los controles ambulatorios.

Palabras claves: Terapia de resincronización cardíaca, Respuesta, Remodelado eléctrico reverso.

REV ARGENT CARDIOL 2023;91:37-44. http://dx.doi.org/10.7775/rac.v91.i1.20591

Received: 11/30/2022 – Accepted: 12/16/2022

Address for reprints: Joaquín Álvarez. Calle Prudencio Vazquez y Vega 1130bis apto 1001 CP11300. E-mail: joaquin.vazquez.gonzalez@gmail.com

1 Centro Cardiovascular Universitario Hospital de Clínicas Montevideo
INTRODUCTION
Heart failure (HF) affects 1-2% of the adult population. It has been typically divided into two phenotypes based on the left ventricular ejection fraction (LVEF): HF with slightly reduced or preserved LVEF, and HF with reduced LVEF (HFREF). Cardiac resynchronization therapy (CRT) is mostly indicated for patients with HFREF and major cardiac remodeling, dilated chambers, and impaired ventricular conduction, both closely related to poor prognosis. (1–5)

CRT intends to correct cardiac dyssynchrony by stimulating both ventricles and achieve a more physiological activation and contraction. (6,7) From 25% to 50% individuals with a >120-msec QRS complex have HFREF, and 15-27% experience complete left bundle-branch block (LBBB). (8–10) Maximum benefit has been observed in addition to medical treatment in symptomatic patients with New York Heart Association (NYHA) functional class (FC) II-III, with sinus rhythm and LVEF <35%, a QRS longer than 150 msec, and LBBB morphology. (1,2)

This technique has shown the ability to optimize cardiac function and reduce chamber dimensions (reverse remodeling), improve symptoms, anticipate a better condition, and reduce HF hospitalizations and deaths when the patient has been properly screened. (11–15) The degree of reverse remodeling has been directly associated with reduced mortality and hospitalizations. (16–18) To evaluate response (even with heterogeneous definitions), different clinical parameters are used, such as an improved NYHA FC, HF hospitalization rate, and deaths. The most common technique to measure the structural and functional impact is the echocardiography, which is used to estimate the presence and extent of reverse modeling in LV dimensions, generally through end-systolic volume and LVEF improvement. A 15% or higher reduction in ventricular volumes or diameters and at least a 10% increase in LVEF is considered a “positive” response (despite variable cutoff values, according to the registry). The term “hyper-responders” refers to patients with a ≥30% reduction in ventricular volume, or a better systolic function with LVEF >50%. These patients are less likely to be hospitalized because of HF and have a longer survival. (19)

Despite these considerations and multiple technical improvements relative to imaging tests, implantation technique, and availability of more modern and reliable devices, 20% to 40% of patients do not show a favorable response to CRT (non-responders).

This leads to a concern for new and more accurate markers of response, which are easy to access and read. (16,20) The so-called reverse electrical remodeling has been described as another potential tool to measure response to CRT; it leads to reduced QRS, and decreased native (intrinsic) ventricular activation time. (21-23) However, very few reports evaluate its practicality, and there are controversial data on their association with clinical and structural response, though it has been mostly associated with structural remodeling and has even been suggested as a rapid, easy, and low-cost parameter to predict a positive response to CRT. (24-27) Our experience intends to evaluate electrical remodeling as a potential parameter of response in patients under CRT.

OBJECTIVE
To analyze intraventricular reverse electrical remodeling as a parameter of response to CRT in individuals implanted at least 6 months ago.

METHODS
Design
This is an analytical, observational, longitudinal, retrospective, and single-center study.

Population
The study enrolled living patients with chronic HF treated at the Centro Cardiovascular Universitario del Hospital de Clínicas de Montevideo from 2015 to 2021 by implanting a cardiac resynchronizer, with or without an associated defibrillator (CRT-D and CRT-P respectively), within at least 6 months. All patients had permanent complete LBBB at the time of CRT. Complete LBBB was defined according to AHA/ACCF/HRS recommendations. (28) All patients were in NYHA FC II or III at the time of implantation, and a CRT indication based on the guidelines of the European Society of Cardiology. (1,2)

Patients with a pacemaker or with no sinus rhythm at the time of implantation or follow-up, or patients with a resynchronizer implanted as an upgrade to a pacemaker with previous right ventricular stimulation were excluded. Patients with a non-complete LBBB QRS morphology, such as complete right bundle-branch block (RBBB), were also excluded. (1,2) After meeting inclusion and no exclusion criteria, 23 patients were enrolled. Figure 1 shows the study design.

Clinical variables
Clinical data, structural and functional ECGs were collected at the time of implantation based on each patient’s medical history and procedure report. In addition, data from outpatient follow-up (Figure 1) were collected, including a brief case history on subjective clinical improvement after CRT, current NYHA FC, and details on the pharmacological treatment.

Device control, records, and surface ECG measures
Based on each patient’s medical history, the most recent ECG before the date of CRT implantation was obtained (“pre-CRT” QRS complex, Figure 1). The day when the patient returned for follow-up, the device was followed with programmers. The biventricular stimulation percentage (%BiV) was obtained at the time. There were two new standard 12-lead ECGs per patient, using a FUKUDA DEN-SHI CARDIMAX FX-2111 electrocardiograph gauged at a 25 mm/s paper speed and with a 0.1 mV/mm voltage. The first ECG was performed with the CRT device stimulated according to usual patient programming (stimulated QRS). To assess intrinsic ventricular activation (“post-CRT” iQRS), a second ECG was performed 5 minutes after temporary implantation discontinuation, programming the device as an off (ODO) or on-demand (VVI) CRT with a HR of 40 bpm.
After recording, the device was reprogrammed with the patient’s previous setup.

These ECG showed presence or absence of sinus rhythm. Three electrophysiologists and one electrophysiology-trained cardiologist were asked to measure the duration of QRS complexes (msec) with the most representative leads, concealing any data that might identify the patients and ensuring that those measuring QRS complexes ignored CRT response.

Structural variables (TTE)

The transthoracic echocardiography (TTE) report closest to, and before the date of CRT implantation was obtained from the patient’s previous medical history. These reports showed pre-CRT LVEF data, the left ventricular end-diastolic diameter (pre-CRT LVEDD), and the presence and extent of mitral valve regurgitation (pre-CRT MR).

On the day of the new ECG, and after checking the device, each patient had a new TTE performed using ultrasound General Electric Vivid iQ equipment with a 3.5 Mhz transducer, as recommended by the American Society of Echocardiography. Images of two and four chambers apical and left parasternal areas were captured using color Doppler. An echocardiography technician, also blind to clinical data, read the images, estimated the LVEF using the biplane Simpson method (post-CRT LVEF), measured the LVEDD, and defined the presence and severity of mitral regurgitation (post-CRT MR).

CRT response definition

The patient was categorized as a “clinical responder” and/or “structural responder” based on the most common criteria to evaluate response to CRT (13,16,29–31):

- A “clinical responder” is someone with subjective improvement and at least one level improvement (reduction) in the NYHA functional class as compared to the value before the implantation.
- A “structural responder” is someone with reduced LV diameters by at least 15% and/or increased LVEF by at least 10%.
- A “hyper-responder” is someone with reduced LV diameters by 30% and/or normal LVEF.

Statistical analysis

Normal data distribution was checked using the Anderson-Darling normality test. Continuous variables are presented as mean ± standard deviation (SD), or median and interquartile range (IQR) of 25-75%, as appropriate. Categorical variables are presented with absolute and relative frequencies. To evaluate changes in the continuous variable of interest, iQRS, in response to CRT (pre/post CRT analysis), the t test or Wilcoxon test for paired data was used, as appropriate. Also, behavior of ΔiQRS as a continuous variable (post-CRT QRS – pre-CRT QRS in msec) was compared in responders vs. non-responders (paired t test or Mann-Whitney test, as appropriate). These analyses were performed for the clinical-structural (CS) response and hyper-response across the sample and certain subgroups of patients (female vs. male, baseline QRS >150 msec vs. <150 msec, females with a baseline QRS >150 msec vs QRS <150 msec, patients with vs without improved MR). A p-value <0.05 was considered statistically significant. All graphical analyses used software Graph Pad Prism, version 9.0.

Ethical considerations

The ethical principles set forth in the Declaration of Helsinki and latest amendments for research in humans were followed. All patients were called to be informed about the study prior to enrollment. At the time of evaluation in the clinic, each patient gave their written informed consent. The study and informed consent provided to the patients had been previously approved by the Hospital de Clínicas Ethics Committee.
RESULTS
Study population characteristics
A total number of 23 patients were enrolled. Clinical, echocardiographic, implant-related, and electrocardiographic variables are displayed in Table 1.

The patients across the sample showed a similar per-sex distribution; 12 were female (52%). Four (18%) patients had ischemic heart disease, and 19 (82%) patients had non-ischemic heart disease. The average age at the time of implantation was 60±12 years, while the age at the time of follow-up was 64±12 years. The mean follow-up from implantation to control was 43±20 months, ranging from 7 to 96 months.

A high rate of treatment adherence was observed among patients; 73% were under simultaneous therapy with beta-blocker (BB), angiotensin converting enzyme inhibitors (ACEi)/angiotensin II receptor blockers, Bb, angiotensin-converting enzyme inhibitors. ARB: angiotensin II receptor blockers. BB: beta-blockers. BiV: bi-ventricular. CRT: cardiac resynchronization therapy. IQR: interquartile range. LVEDD: left ventricular end-diastolic diameter. LVEF: left ventricular ejection fraction. MR: mitral regurgitation. MRA: mineralocorticoid receptor antagonists. NYHA FC: New York Heart Association functional class. OMT: optimal medical therapy. SD: standard deviation.

The duration of the intrinsic QRS complex prior to CRT was 160 (150-170) msec, and after the CRT, it was 160 (140-160) msec. Nine (39%) patients showed at least a 10 msec reduction in the iQRS duration. Maximum reduction was 40 msec and occurred in three patients. The iQRS increased in eight patients and remained stable in six.

Analysis of response to CRT
Table 2 shows the characteristics of CRT responders. Twenty-one (91%) patients in our study were “clinical responders”. The ΔiQRS in this group was -4.7±20.4 msec. Structurally and functionally, both LVEDD and increased LVEF showed enhanced response to CRT during follow-up. LVEDD decreased from 66.6±12.7 mmm to 61.7±12.9 mm, and LVEF increased from 41.6±13.4% to 46.8±13.0%.

Table 2. ECG and clinical response to CRT (pre- and post-CRT analysis)

<table>
<thead>
<tr>
<th>Response parameters</th>
<th>Pre-CRT</th>
<th>Post-CRT</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEF (%) mean±SD</td>
<td>26.3±5.7</td>
<td>41.6±13.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>LVEDD (mm), mean±SD</td>
<td>66.6±12.7</td>
<td>61.7±12.9</td>
<td><0.0001</td>
</tr>
<tr>
<td>ECG variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRS (msec), median (IQR 25-75)</td>
<td>160 (150-170)</td>
<td>160 (140-160)</td>
<td>0.63</td>
</tr>
</tbody>
</table>

CRT: cardiac resynchronization therapy. LVEDD: left ventricular end-diastolic diameter. LVEF: left ventricular ejection fraction;
mm pre-CRT to 61.7±12.9 mm post-CRT, with a higher than 15% reduction in 7 patients (30.4%). LVEF increased from 26.3±5.7% to 41.6±13.4%, with a higher than 10% increase in 16 patients (70%).

Fifteen (65%) patients were considered “responders” based on both structural and clinical criteria. The LVEDD was significantly reduced from 64.6±8.7 mm to 59.8±7.5 mm, and the LVEF increased from a baseline value of 25.5±6.8% to 40.6±9.5% (Table 2). Nine (39%) patients were “hyper-responders”. All of them had clinical response.

As shown in Table 2, the pre- and post-CRT analysis of the total number of patients found that the duration of QRS did not vary significantly following the CRT.

Figure 2 shows a sample case, with iQRS measurements before and after the CRT in a “responder”.

Fig. 2. Reverse electrical remodeling of the left ventricle before and after CRT. (Images are repeated using calipers and measures.) This patient showed increased LVEF from 28% to 52%, and decreased LVEDD from 77 to 58 mm. CRT: cardiac resynchronization therapy.

Fig. 3. Differences in iQRS before and after the CRT in the entire population (A), the female subgroup (B), individuals with an initial QRS ≥150 msec (C), and women with an initial QRS ≥150 msec (D). CRT: cardiac resynchronization therapy.
Subgroup analysis

There was a trend in iQRS duration variation after the CRT in the female subgroup, though it lacked statistical significance (p=0.056, Figure 3B). Changes in the duration of iQRS were not higher in those with a baseline QRS of ≥150 msec (p=0.65, Figure 3C). Upon analysis of the subgroup of women with an initial QRS ≥150 msec prior to CRT, significant reduction of the iQRS was observed (p=0.0195, Figure 3D).

The change in pre- and post-CRT iQRS duration was unrelated to the non-ischemic etiology (p=0.72) or to age (p=0.78).

The ΔiQRS was -9.3±20.7 msec among clinical-structural “responders,” and 11.25±18.9 msec among non-responders (p=0.027). This difference was slightly larger among “hyper-responders,” with a ΔiQRS of -14.44±17.40 msec (p=0.026). There was no significant association of ΔiQRS with MR improvement (p=0.084). (Figure 4)

DISCUSSION

To the best of our knowledge, this is the first study to describe reverse electrical remodeling in patients under local and regional CRT.

After CRT, the duration of iQRS was reduced at least 10 msec in nine of the patients, though this lacked statistical significance. In observational studies like ours, QRS reduction was significant and generally associated with increased LVEF. (21) Subgroup analysis shows that ΔiQRS is related to clinical-structural response, more markedly in patients having a “hyper-response” to CRT. Despite sample size limitations, our findings contribute to the hypothesis that a shorter QRS leads to an improved intraventricular conduction system, and therefore, reverse LV remodeling. Further investigation is required to assess this hypothesis.

We showed a tendency towards stronger electrical remodeling in women with a wider baseline QRS. This is consistent with traditional response definitions. (1, 31-33)

Mechanisms resulting in reverse electrical remodeling are not fully known. It might be said that improvements in the size of chambers favor faster conduction upon myocardium contraction. It has also been suggested that this may happen as a result of full or partial recovery of the specialized conduction system itself. (22, 33,34) Another possible CRT-related effect is reduced cardiac fibrosis. (35) The underlying question also involves pathophysiological complete LBBB mechanisms and their multiple physiological and anatomical variants, an electrocardiographic pattern that may lead to completely interrupted or delayed conduction across the left bundle branch, which might result in right bundle branch overexpression. (36)

The cutoff point used to define electrical remodeling is even less consistent. Sebag et al. prospectively enrolled 85 patients with CRT indication, and evaluated clinical, echocardiographic, and electrocardiographic variables before and 12 months after the CRT. They found 19 and 18 msec cutoff points, with a sensitivity and specificity of 86/60% and 84/60%, respectively, to associate ΔiQRS with the clinical and echocardiographic response, respectively. Following a multivariate analysis, ΔiQRS ≥20 msec was an independent predictor of the echocardiographic response. (26)

We showed a tendency towards a reduced native QRS relative to improved MR, reaching no significance. The study by Karaca et al. found that reverse electrical remodeling is associated with improved MR and geometry of the mitral valve anatomy. (34) According to them, in addition to secondary improvement thanks to the cited ventricular remodeling, reversed papillary muscles dysynchrony may lead to a
major CRT-related benefit, and both clinical and functional enhancement.

Future prospective investigations are required to assess the clinical, structural and electrical response in several specific subpopulations of patients undergoing CRT, in an attempt to better understand the pathophysiology of its effects. We consider this becomes more relevant and that it will merit new studies to know if the reverse electric remodeling is similar or more accentuated in the era of stimulation of the specific conduction system. (37, 38)

Conflicts of interest
None declared.

(See authors conflicts of interest forms in the website/Supplementary material)

REFERENCES