Evaluation of the antimicrobial efficacy of *Minthostachys verticillata* essential oil and limonene against *Streptococcus uberis* strains isolated from bovine mastitis

Ivana D. Montironi, Laura N. Cariddi, Elina B. Reinoso*

*Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina

Received 7 October 2015; accepted 18 April 2016

Available online 9 September 2016

**KEYWORDS**

*Streptococcus uberis*; *Minthostachys verticillata*; Essential oil; Limonene; Bovine mastitis; Antibacterial activity

**Abstract** Bovine mastitis is a disease that causes great economic losses per year, being *Streptococcus uberis* the main environmental pathogen involved. The aim of the present study was to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of *Minthostachys verticillata* essential oil and limonene for *S. uberis* strains isolated from bovine mastitis. In addition, the effect of MIC on biofilm formation was analyzed. MIC values for the essential oil ranged from 14.3 to 114.5 mg/ml (1.56–12.5% v/v) and MBC between 114.5 and 229 mg/ml (12.5–25% v/v). MICs for limonene ranged from 3.3 to 52.5 mg/ml (0.39–6.25% v/v) and MBC was 210 mg/ml (25% v/v). Both compounds showed antibacterial activity and affected the biofilm formation of most of the strains tested. In conclusion, these compounds could be used as an alternative and/or complementary therapy for bovine mastitis caused by *S. uberis*.

© 2016 Asociación Argentina de Microbiología. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Antibacterial activity of *M. verticillata* against *S. uberis*

Introduction

Mastitis is a worldwide disease of dairy cattle that is caused by a wide variety of organisms that affect milk quality and yield, resulting in major economic losses. In many countries it is the most costly disease in dairy milk production\(^1\). *Streptococcus uberis* is an important pathogen implicated in bovine mastitis, which is predominantly associated with subclinical and clinical intramammary infections in both lactating and non-lactating cows. This species is particularly problematic due to the fact that it is ubiquitous in the dairy environment. A potential virulence factor, possibly linked to the ability of *S. uberis* to adhere to cells, would be the formation of biofilm\(^2\). It is important to forestall the formation of biofilm in order to treat and prevent intramammary infections.

The ineffectiveness of the different procedures to reduce the rate of new infections has directed research studies toward the search for alternative control methods\(^21,27\). Within this context, the search for new effective natural prototypes for the treatment of bovine mastitis does not compromise the milk quality that is important for a better quality of dairy farming and food production. Alternative treatments with medicinal plants may be a safe, efficient and a low-cost option for treating bovine mastitis\(^23\). Essential oils classified as GRAS (Generally Regarded As Safe), show antibacterial properties and resistance has not been reported after prolonged exposure. Therefore, the investigation of their antimicrobial activity against bacterial agents of mastitis is justifiable\(^3\).

*Minthostachys verticillata* (Griseb) Epling (Lamiaceae), commonly referred to as "peperina", is an ethnobotanical aromatic herb with various uses and properties. This species is distributed in South American countries such as Colombia, Venezuela, Brazil, Ecuador, Peru, Bolivia, and in the northwest and central regions of Argentina\(^14,29\). According to folk traditional medicine it is used as a digestive, sedative, antispasmodic, stimulant, and also to alleviate respiratory illnesses, bronchitis, and asthma\(^10\). Moreover, numerous in vitro studies have described the antiviral, antibacterial and antifungal properties of *M. verticillata* essential oil (EO)\(^12,11,14,20,26\).

In addition, the lack of toxic effect of *M. verticillata* EO and its main compounds, both in vitro as in vivo, has been demonstrated\(^12,13,21\). In a previous assay, we demonstrated that EO obtained from this species and from limonene, one of its main compounds, showed antimicrobial activity against the major bovine mastitis pathogens such as *Staphylococcus aureus*, *S. uberis*, *Escherichia coli* and coagulase negative *Staphylococcus* (CNS) by the disk diffusion method\(^6\).

The aim of the present work was to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of *M. verticillata* EO and limonene for *S. uberis* strains isolated from bovine mastitis. In addition, the effect of MIC on biofilm formation was analyzed.

Materials and methods

Plant material

Green leaves and thin stems from *M. verticillata* were collected in Villa Larca city, province of San Luis, Argentina in April, 2013. The voucher specimens were deposited in the herbarium of Universidad Nacional de Río Cuarto (Rio Cuarto city, province of Córdoba, Argentina).

Essential oil extraction

Essential oil was obtained from the aerial parts of the plant, composed of leaves and parts of the stem. To prepare the EO, 60 grams of ground material were hydrodistilled using a Clevenger-type apparatus for 3 h. The oil was separated
from the aqueous phase, dried over anhydrous Na$_2$SO$_4$ and stored in the dark at $-20^\circ$C until use.

The pure compound limonene was purchased from Sigma Aldrich (St. Louis, USA) as (R)-(+)-Limonene.

**Identification and quantification of essential oil compounds by gas chromatography-mass spectrometry (GC/MS).** To perform this analysis, a gas chromatograph Clarus 600, PerkinElmer (Shelton, Connecticut, USA) serial number 664N9100105 fitted with a DB5 capillary column (60 m, 0.25 mm ID, 0.25 µm particle), was used. Carrier gas: helium (49.6 psi). Oven temperature program: initial temperature 60°C (2 min), ramp: 5°C/min, final temperature 240°C (10 min). Injector temperature was 300°C. The sample was injected in split mode (20 ml/min). The chromatogram was obtained in “scan” mode, since m/z = 30 to m/z = 450 (scan time: 0.2 s, inter-scan time: 0.1 s, solvent delay: 5 min). The identification of the compounds present in the EO sample was performed by comparison of retention times and mass spectrum of the components found with the mass spectrum of the program library NIST MS Search 2.0. Under the same chromatographic conditions, the pure compounds (standard grade) were injected to verify the identity of the major components in the sample. Quantification of components present in the oil sample was carried out by measuring the area under each peak of the chromatogram.

**Microorganisms**

Fifteen S. ubei strains isolated from cows with mastitis from the central dairy region of Argentina were used in this study. The strains were previously identified according to Jayarao et al. and additionally confirmed by RFLP analysis of the 16S rRNA gene according to Khan et al. All strains were maintained at $-20^\circ$C as stock strains in tryptic soy broth (TSB) (Britania S.A., Argentina) with glycerol until use.

**MIC and MBC assay**

The microdilution method was employed to determine the MIC and the MCB as recommended by the National Committee for Clinical Laboratory Standards. For inoculum preparation, each strain was grown in 3 ml of TSB for 24 h at 37°C. The microorganisms to be tested were prepared by dilutions from cultures grown on TSB (1 x 10$^6$ colony forming units (CFU/ml), resulting in a bacterial suspension equivalent to 1 x 10$^6$ CFU/ml. EO and limonene were twofold serially diluted volume to volume in dimethylsulfoxide (DMSO) (Sintorgan, Buenos Aires, Argentina) and phosphate buffer saline pH 7.4 (PBS) (1:8) to facilitate solubility in the culture medium, and serial dilutions were performed, resulting in concentrations from 229 (25% v/v) to 0.45 mg/ml (0.049% v/v) and 210 (25% v/v) to 0.41 mg/ml (0.049% v/v) for EO and limonene, respectively.

The antimicrobial activity of limonene naturally present in the EO was also evaluated. A volume of 75 µl of each diluted agent and an equal volume of the standardized culture of each strain (1 x 10$^6$ CFU/ml) to be tested were added aseptically into the microplates, which were incubated at 37°C for 24 h. In addition, wells containing each microorganism culture in TSB without the tested agents were measured as positive control, DMSO as vehicle control and only TSB as negative control. The MIC was determined as the lowest concentration of EO or limonene inhibiting visible growth. Absorbance was read at 560 nm using a spectrophotometer (Labsystem Multiskan MS, Thermo, Vantaa, Finland). The percentage of inhibition for the MIC of each agent was calculated using the formula described by Aiem- saard et al.:

$$[1 - \frac{(OD_{560 \text{ sample}}/OD_{560 \text{ control}})}{\times 100\%}]$$

All experiments were repeated twice using different microplates on each occasion.

To determine the MBC, volumes of 100 µL from wells without visible bacterial growth after 24 h of incubation were inoculated onto the surface of tryptic soy agar (TSA) (Britania S.A.) and incubated at 37°C for 24 h. The MBC was determined as the lowest agent concentration that killed greater than 99.9% of the initial bacterial population, which was indicated by no visible bacterial growth on the TSA plate surfaces. The positive growth of each microorganism culture in TSB without the tested agents served as a positive control and the growth was demonstrated only by TSB. In addition, oil diluent was used as vehicle control.

**Antibacterial activity of essential oil and limonene against produced S. ubei biofilms**

Seven strains, previously assayed for biofilm formation and considered to be strong formers according to Stepanovic et al., were used in this study. After aerobically incubation at 37°C for 24 h in order to produce biofilm, the medium was gently removed and the wells were washed three times with PBS pH 7.4. The MICs of the EO and limonene were then added separately to the biofilms and incubated for a further 24 h at 37°C. After biofilm formation, the medium was aspirated and non-adherent cells were removed by washing the biofilms twice with PBS. The adherent bacteria were stained with 100 µl of 0.1% of crystal violet for 15 min at room temperature. After rinsing with 200 µl of distilled water, the dye bound to the cells was extracted with 200 µl of 99% ethanol for 20 min. The extracted dye was then quantified by measuring absorbance at 560 nm. A series of biofilm oil-free wells and medium alone were also included to serve as positive and negative controls, respectively.

The percentage of biofilm inhibition for each agent was calculated using the formula described by Aiemsaard et al.

**Statistical analysis**

All the tests were performed in duplicate. The data obtained by microdilution assays were evaluated to a one-way analysis of variance (ANOVA) and the Tukey’s multiple comparison tests using the program GraphPad Prism version 5.0.0.288 (San Diego, USA, 2007). MIC values (OD) were expressed as mean ± standard deviation (SD). P values <0.05 were considered significant.
Antibacterial activity of *M. verticillata* against *S. uberis*

Results and discussion

The aim of this study was to determine the antimicrobial efficacy of *M. verticillata* EO and limonene on *S. uberis* strains isolated from bovine mastitis.

The yield of *M. verticillata* EO was 4.8\% w/v. GC/MS analysis revealed that the main components of the oil were pulegone (51.7\%) and menthone (37.8\%). Other compounds present were cis-menthone (1.4\%), piperitone (1.4\%) and limonene (1.2\%). (Fig. 1, Table 1). This work has demonstrated that *M. verticillata* EO is mainly composed of pulegone and menthone, in agreement with previous studies\(^{5,11,12,34}\) where the composition of *M. verticillata* EO was reported.

The antimicrobial activity of *M. verticillata* EO and limonene against *S. uberis* strains isolated from bovine mastitis has not been previously reported. This is the first study that demonstrated significant antimicrobial activity of both EO and limonene against this bacterium. MIC values for EO ranged from 14.3 to 114.5 mg/ml (1.56–12.5\% v/v) and MBC values, between 114.5 and 229 mg/ml (12.5–25\% v/v). MICs for limonene ranged from 3.3 to 52.5 mg/ml (0.39–6.25\% v/v) and MBC was 210 mg/ml (25\% v/v). The MIC values were corroborated by absorbance measurement. Table 2 shows MIC and MBC values (% v/v and OD) of EO and limonene against the seven *S. uberis* strains that were more sensitive to these compounds. Our results demonstrated that EO as limonene showed good antibacterial activity. The bacterial strains tested have shown susceptibility to both agents.

Limonene showed inhibitory effects against the strains tested; these results indicated that limonene could be one of the compounds responsible for the antibacterial effect showed by EO. However the whole essential oil demonstrated to be a more potent bacterial agent compared to limonene\(^{19}\).

The EO and limonene were also tested against *S. uberis* strains considered to be strong biofilm formers. Both agents were able to reduce biofilm production. The percentages of

![Figure 1](image_url) Chromatographic profile of the essential oil from the species *Minthostachys verticillata* collected from Villa Larca, San Luis, Argentina, obtained by GC-MS. The area represented by the peaks corresponds to the proportions in which each component is in the mixture. Retention times of each peak are observed.

<table>
<thead>
<tr>
<th>Identified compound</th>
<th><em>M. verticillata</em> essential oil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Retention times</td>
</tr>
<tr>
<td></td>
<td>(min)</td>
</tr>
<tr>
<td>β-caryene</td>
<td>10.486</td>
</tr>
<tr>
<td>β-pinene</td>
<td>12.136</td>
</tr>
<tr>
<td>Limonene</td>
<td>14.002</td>
</tr>
<tr>
<td>Menthone</td>
<td>18.634</td>
</tr>
<tr>
<td>cis-menthone</td>
<td>18.879</td>
</tr>
<tr>
<td>Isopulegone</td>
<td>19.219</td>
</tr>
<tr>
<td>Cyclohexanone, 2-isopropyl-2,5-dimethyl-</td>
<td>20.620</td>
</tr>
<tr>
<td>Pulegone</td>
<td>21.390</td>
</tr>
<tr>
<td>Piperitone</td>
<td>21.810</td>
</tr>
<tr>
<td>Bicyclo[2.2.1]heptan-2-ol, 2-allyl-1,7,7-trimethyl-</td>
<td>22.820</td>
</tr>
<tr>
<td>Pipieritenone</td>
<td>24.421</td>
</tr>
<tr>
<td>γ-elemene</td>
<td>28.833</td>
</tr>
<tr>
<td>Spathulenol</td>
<td>31.029</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
</tr>
</tbody>
</table>


The table shows the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of *M. verticillata* EO and limonene against *S. uberis* strains.

<table>
<thead>
<tr>
<th>S. uberis strains</th>
<th>EO treatment</th>
<th>Limonene treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive control</td>
<td>6.25 ± 0.02</td>
<td>90.74 ± 0.11</td>
</tr>
<tr>
<td>Growth (OD)</td>
<td>12.50 ± 0.02</td>
<td>90.74 ± 0.11</td>
</tr>
<tr>
<td>Negative control</td>
<td>8.00 ± 0.02</td>
<td>90.74 ± 0.11</td>
</tr>
<tr>
<td>Growth (OD)</td>
<td>12.50 ± 0.02</td>
<td>90.74 ± 0.11</td>
</tr>
<tr>
<td>Vehicle control</td>
<td>6.25 ± 0.02</td>
<td>90.74 ± 0.11</td>
</tr>
<tr>
<td>Growth (OD)</td>
<td>12.50 ± 0.02</td>
<td>90.74 ± 0.11</td>
</tr>
<tr>
<td>DMSO (OD)</td>
<td>0.00 ± 0.02</td>
<td>90.74 ± 0.11</td>
</tr>
<tr>
<td>Growth (OD)</td>
<td>12.50 ± 0.02</td>
<td>90.74 ± 0.11</td>
</tr>
</tbody>
</table>

Figure 2  Effect of minimum inhibitory concentrations (MICs) of essential oils and limonene against biofilm of *S. uberis*.

The inhibition of EO MIC were from 88.25 ± 7.62 to 23.50 ± 16.26 and of limonene were from 92.18 ± 4.78 to 23.20 ± 16.05. Fig. 2 shows the effectiveness of EO and limonene against *S. uberis* biofilm.

Different studies have evaluated the efficiency of plant essential oils for improving milk quality in dairy cattle. The literature reports numerous studies referring to the antibacterial activity of essential oils against other pathogens isolated from bovine mastitis such as *Staphylococcus* spp., *S. aureus*, *Streptococcus agalactiae*, *Bacillus cereus*, *E. coli*\(^1,9,25\). However, few studies demonstrated the antibacterial activity of essential oils against *S. uberis*. Lambrecht Gonçalves et al.\(^7\), evaluated the antibacterial activity of the essential oils of *Cymbopogon citratus* (DC.) Stapf., *Elionurus* sp. and *Tagetes minuta* L., against bacteria isolated from bovine milk. These authors obtained MIC values of 0.9%, 0.15% and 0.75%v/v, respectively, for the three vegetable species against *S. uberis*, which were similar to those obtained with limonene in our study.

Mullen et al.\(^21\) evaluated the antibacterial activity of Phyto-Mast (Bovinity Health LLC, Narvon, PA), an herbal intramammary product, against 3 mastitis-causing pathogens: *S. aureus*, *S. chromogenes*, and *S. uberis* by a modified protocol for broth dilution in vitro. The presence of the essential oil of *Thymus vulgaris* (thyme) in the formula may account for antibacterial action. The results showed that thyme essential oil had consistent antibacterial activity against the 3 mastitis-causing organisms tested.

The effect of EO and limonene against biofilm formation in *S. uberis* has not been previously reported. However, different studies showed the inhibition of *S. aureus* biofilm formation by essential oils. Aemsaad et al.\(^1\) determined the effects of lemongrass oil in inhibiting biofilm formation of *S. aureus* isolated from bovine mastitis and they found that, it had 44.9 ± 7.4%, inhibition on *S. aureus* biofilm formation at concentrations of 0.025%v/v of lemongrass oil.

It is important to note that the toxic effect of *M. verticillata* EO and its main compounds has been evaluated in vitro\(^7,12,32\) and in vivo\(^5,7,12,15,32\). These authors have found no toxic effects of *M. verticillata* EO and its main compounds.
In conclusion, this study demonstrated that *M. verticillata* EO, as well as limonene, one of its main components showed antimicrobial efficacy against *S. uberis* strains presented as alternatives to be evaluated in vivo for the treatment of intramammary infections caused by this agent in cattle. However, further studies are needed to determine the mode of action of EO and limonene.

These results reinforce the importance of compounds isolated from plants and their influence on the elimination of pathogenic microorganisms, reaffirming the role of natural products.

**Ethical disclosures**

Protection of human and animal subjects. The authors declare that no experiments were performed on humans or animals for this study.

Confidentiality of data. The authors declare that no patient data appear in this article.

Right to privacy and informed consent. The authors declare that no patient data appear in this article.

Conflict of interest

The authors declare that they have no conflicts of interest.

**Acknowledgements**

This work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET) and PICT 2268/13. Mic. Ivana Dalila Montironi has Fellowship from CONICET. Dr. Laura Noelia Cariddi and Dr. Elina Beatriz Reinoso are Members of the Research Career of CONICET.

**References**


