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Hialuronic acid in the eggshell of Salvator merianae (Squamata: Teiidae)
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Abstract
Eggshell is a multifunctional biological system in which minerals, fibril-forming biopolymers, and glycosaminoglycans 

coexist, whose combination produces materials with exceptional qualities and functional heterogeneity. In particular, 
glycosaminoglycans are characterized by their properties to produce viscoelastic hydrogels, control bacterial growth, 
and provide tissue resistance. In this work, we examined the eggshell surface of Salvator merianae with optical 
microscopy, transmission electron microscopy, and Raman vibrational spectroscopy. Histochemical examination using 
Alcian Blue combined with Periodic Acid-Schiff demonstrated a continuous glycosaminoglycan coating on the eggshell 
surface. Ultra-structurally this glycosidic coating exhibited an amorphous configuration with zones of different electron 
density. Besides, Raman spectroscopic analysis of this region showed representative vibrational bands of hyaluronic 
acid. A characteristic biopolymer coating for its high hydration capacity and rheological properties would be linked to 
the necessary hydric requirements for S. merianae embryonic development and would allow considering appropriate 
parameters for the artificial incubation of eggs in this species. Determining the biomolecules that make up the eggshell 
of reptiles could provide new biological material for research in the emerging field of biomaterials.
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Resumen
La cáscara de huevo es un sistema biológico multifuncional en el que coexisten minerales, biopolímeros formadores 

de fibrillas y glicosaminoglicanos, cuya combinación produce materiales con cualidades excepcionales y heterogeneidad 
funcional. En particular, los glicosaminoglicanos son característicos por sus propiedades para producir hidrogeles 
viscoelásticos, controlar el crecimiento bacteriano y proporcionar resistencia tisular. En este trabajo examinamos la 
superficie de la cáscara de huevo de Salvator merianae con microscopía óptica, microscopía electrónica de transmisión, 
y espectroscopía vibracional Raman. El examen histoquímico utilizando Azul Alcián combinado con Ácido Peryodico de 
Schiff demostró una cubierta ininterrumpida de glicosaminoglicanos en la superficie de la cáscara. Ultraestructuralmente 
este revestimiento glicosídico exhibió una configuración amorfa con zonas de diferentes electrodensidades. En adición, 
el análisis espectroscópico Raman de esta región evidenció bandas vibracionales representativas del ácido hialurónico. 
Una cobertura de biopolímeros característicos por su elevada capacidad de hidratación y propiedades reológicas, 
estaría vinculada con los requerimientos hídricos necesarios para el desarrollo embrionario de S. merianae y permitiría 
considerar parámetros apropiados para la incubación artificial de los huevos en esta especie. Determinar las biomoléculas 
que conforman la cáscara de huevo de los reptiles podría proporcionar un nuevo material biológico para investigar en el 
campo emergente de los biomateriales.

Palabras clave: Biomateriales; Glicosaminoglicanos; Espectroscopía Raman; Reptiles.

Introduction

Through millions of years of evolution, reptiles 
have developed a peculiar heterogeneity of repro-
ductive patterns and, consequently, strategies nec-
essary to adapt to the land habitat (Reisz, 1997). 
The amniote egg represents an outstanding inno-
vation that has linked the composition and confor-
mation of the shell with metabolism, development, 

and embryonic survival (Hallmann and Griebeler, 
2015). This adaptation against desiccation implies 
that the egg must contain all the necessary com-
ponents to guarantee extrauterine development 
(Schmidt-Nielsen, 1997). To ensure this dynamic 
challenge, the shell controls the exchange of wa-
ter and gases, protects the embryo from microbial 
attack, and is a source of minerals (Osborne and 
Thompson, 2005; Chang and Chen, 2016).
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Considering the structural organization of the 
eggshell and the sensitivity to the hydric environ-
ment of the nest, it is possible to distinguish eggs 
with strongly calcified eggshells, characteristic 
of some gekkotan species (Schleich and Kästle, 
1988; Pike et al., 2012) and eggs with flexible 
shell or parchment-shelled eggs, distinctive of 
lizards and snakes (Packard et al., 1982b; Hirsch, 
1983). 

Recently it was demonstrated that the eggshell 
of Salvator merianae has an organic and inorganic 
composition notably different from that described 
for the parchment-shelled eggs of reptiles (Cam-
pos-Casal et al., 2020). It was found the presence 
of hydroxyapatite in the deep section of the shell, 
compact and alveolar fibers, and although it was 
not characterized at the molecular level, the his-
tological analysis revealed a glycoprotein coating 
on the outer surface of the egg (Campos-Casal et 
al., 2020).

Eggshells are a perfect example of the organ-
ic-inorganic concept made up of multifunctional 
biopolymers and biominerals, recognized for their 
lightweight, strong, and resistant structure (Fratzl 
and Weinkamer, 2007). The remarkable tough-
ness and damage tolerance of these biological 
materials are conferred through the hierarchical 
assembly of their architectures, and multiscale 
components (Weinkamer and Fratzl, 2011). The 
organic components that makeup biopolymers are 
protein-forming polypeptides (collagen, keratin, 
elastin, resilin, fibroin, abductin), and glycosami-
noglycans [GAGs; (Chen et al., 2012; Scott and 
Panitch, 2013)]. 

GAGs are a small family of polymers consist-
ing of unbranched chains of repeated disaccharide 
units containing hexosamine, and hexuronic acid 
or hexose (Ellis et al., 2009). Because of their ten-
dency to occupy large domains in aqueous solu-
tion, GAGs are responsible for the structural and 
mechanical functions of the extracellular matrix 
[ECM; (Raman et al., 2005)].

There are two major types of GAGs. Sulfated 
GAGs include chondroitin sulfate, dermatan sul-
fate, keratan sulfate, heparin, and heparan sulfate; 
while hyaluronic acid (HA) or hyaluronan is the 
only non-sulfated GAG (Gandhi and Mancera, 
2008). HA is a biopolymer composed of a disac-
charide sequence of N-acetylglucosamine (Glc-
NAc) and D-glucuronic acid (GlcA) linked by 
alternating glycosidic bonds β-1→4, and β-1→3 
(Nusgens, 2010). Due to the high number of car-

boxyl and hydroxyl groups, HA is a highly hydro-
philic biomaterial, that forms a gel-like structure 
in aqueous solution as a result of intermolecular 
interaction among linear polymers (Zhu et al., 
2017). In terms of water transport, diffusion, and 
ion exchange, the physiological functions of tis-
sues are determined by the concentration of HA 
and its molecular weight (Dicker et al., 2014). 
Besides, this polymer has shown to possess sig-
nificant bacteriostatic properties (Romanò et al., 
2017; Chen et al., 2019). The remarkable visco-
elastic and water retention properties of HA, in 
addition to its biocompatibility, biodegradability, 
and null immunogenicity, have amplified the at-
tractiveness of this biomolecule in the field of tis-
sue engineering (Fallacara et al., 2018).

The study of bird eggshells has been a focus 
of interest in the emerging field of biomaterials 
(Baláž, 2014; Sah et al., 2016) for its content of 
GAGs (Liu et al., 2014), collagen fibers (Zhao and 
Chi, 2009), and keratins (Nys et al., 2001). Partic-
ularly high proportions of HA have been shown 
in the calcified fraction in the eggs of this animal 
group (Heaney and Robinson, 1976; Liu et al., 
2014). 

Although reptile eggshells have been extensive-
ly studied, the focus has been on the general mor-
phology of their structure, and on the mechanisms 
of mineralization (Kusuda et al., 2013; Hallmann 
and Griebeler, 2015). However, at present, there 
is insufficient information available in terms of 
structural characterization at the multi-scale level, 
compositional analysis, and mechanical properties 
associated with the biomaterials that make up the 
eggshell of reptiles (Chang and Chen, 2016). 

In this context, investigating and identifying 
the constituent biopolymers of S. merianae egg-
shells would offer alternative designs for the mul-
tiscale study of new multifunctional biological 
materials. The structural particularities, chemical 
composition (Campos-Casal et al., 2020), and 
high hydric requirements of the S. merianae egg 
(Manes, 2016), establish criteria for investigating 
the molecular nature of the glycoprotein coating 
of the eggshell. In perspective, knowing the con-
formation of this physiological structure, and the 
behavior of its structural components would allow 
establishing application parameters for the devel-
opment of artificial incubation technologies. 

In the present work, we analyze the ultrastruc-
ture of the surface of the recently oviposited egg 
from S. merianae with transmission electron mi-
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croscopy (TEM), we examine the superficial gly-
cosidic component with optical microscopy and 
we determine the molecular fingerprint of the gly-
coprotein covering using Raman spectroscopy. 

Materials and methods

Biological material

To exclude possible modifications in the struc-
ture and chemical composition of the shells asso-
ciated with incubation or embryonic development, 
eggs recently oviposited in a perfect preserva-
tion status of conservation were used. The eggs 
(n = 24) were taken from six nests built by S. meri-
anae females (with at least two previous egg-lay-
ings). The average weight of the females was 4 
kg, and the average snout-vent length > 35 . The 
animals were housed in the experimental lizard 
farm of the Facultad de Agronomía y Zootecnia of 
the Universidad Nacional de Tucumán, located at 
Finca El Manantial (26º 51’ S, 65º 17’ W), prov-
ince of Tucumán, Argentina. The protocols for the 
handling and care of the animals were carried out 
by the “Guide for the care and use of laboratory 
animals” (Committee for the update of the guide 
for the care and use of laboratory animals, 2011). 
All experiments performed were approved by the 
ethics committee of the Research Council of the 
Universidad Nacional de Tucumán (CIUNT).

Optical microscopy

For the histochemical studies, 12 whole eggs 
were fixed in 4% formaldehyde solution in phos-
phate-buffered saline at pH 6.8 (Suvarna et al., 
2008) for 24 h at 4º C. Small pieces of shells from 
each egg (n = 24) were dehydrated in ethyl al-
cohol, diaphanized in xylene, included in paraf-
fin-celloidin and serially sectioned at 8 μm. 

For the determination of the GAGs, the sections 
were stained for 15 minutes in a solution of 1% 
Alcian Blue 8GX (AB; Sigma-Aldrich, Buenos 
Aires, Argentina) pH 2.5 (Suvarna et al., 2008). 
After washing in distilled water, the shell samples 
were stained with a Periodic Acid-Schiff (PAS) kit 
(Biopur, Rosario, Argentina). The sections were 
then dehydrated in absolute ethyl alcohol and 
mounted in acrylic resin (Biopack, Buenos Aires, 
Argentina). 

The samples were photographed with an Olym-
pus BH2 Microscope (Olympus Corporation, 
Tokyo, Japan) equipped with a Canon Eos Rebel 

T3i digital camera (Canon Corporation, Tokyo, 
Japan).

Electronic microscopy

Small pieces of eggshells (n = 12) were fixed 
in half-concentration Karnovsky´s fixative [2.5 
% glutaraldehyde, 2% formaldehyde, pH 7.4; 
(Karnovsky, 1965)] for 24 h at 4-5 ºC, post-fixed 
with 2% osmium tetroxide (Ted Pella, California, 
U.S.A), dehydrated in increasing concentrations 
of acetone and included in Spurr resin (Ted Pella, 
California, U.S.A). The ultrasections were con-
trasted with 2% Uranyl Acetate (Ted Pella, Cali-
fornia, U.S.A) and observed with Zeiss Libra 120 
Transmission Electron Microscope (Carl Zeiss, 
Oberkochen, Germany) controlled with Win TEM 
user interface and system software (Carl Zeiss).

Raman spectroscopy and statistics

The spectroscopic examination was performed 
with a confocal Raman Microscope DXR (Ther-
mo Fisher Scientific, Waltham, Massachusetts, 
USA) equipped with an excitation wavelength of 
780 nm at 24 mW of power (5 -1 spectral resolu-
tion). A confocal aperture of 50 μm was used for 
data collection. The samples were focused with 
a 20x objective. All measurements were made at 
room temperature.

The outer surface of the recently oviposited egg 
of S. merianae exhibits irregular plaques separat-
ed by fissures (Campos-Casal et al., 2020). This 
configuration was considered to establish the five 
consecutive sampling points on the shell surface 
(n = 6). Indeed, from left to right ( 3C), points one, 
two, four, and five correspond to the samples taken 
in two consecutive plaques. Point three was sam-
pled in the center of a fissure ( 3C). Each sampling 
point produced an individual spectrum, which was 
acquired by accumulating 100 exposures with an 
exposure time of 5 s each. 

A total of 30 spectra were measured from the 
samples. The spectral profile of most of the sam-
pled points proved to be very similar to each other, 
allowing the generation of a single average-spec-
trum representative of the overall spectral behav-
ior of the plaques and fissures. The spectral adding 
and baseline correction of the average-spectrum 
were performed with the optical spectroscopy 
software Spectragryph. The overlapping frequen-
cies were mathematically decomposed with the 
Origin Pro software, using the Voigt function. 

The statistical analysis was performed with 
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In foStat software (Di Rienzo et al., 2018). The 
t-test was used to compare the HA distribution on 
the plaques and the fissures using the vibrational 
frequencies and the Raman intensities of the aver-
age-spectrum.

Results and discussion

Optical microscopy and surface ultrastructure

Microscopic examination of the AB pH 2.5 and 
PAS stained sections exhibited an intense GAGs 
coating on the outer surface of the S. merianae 
eggshell ( 1). 

Figure 1. Light micrograph of a cross-section through egg-
shell stained with AB pH 2.5 and PAS showing a continuous 
coating of glycoproteins on the outer surface. The arrowhead 
points to a fissure. Scale bar 30 µm.

Ultrastructural analysis showed two different 
regions, recognizable by their amorphous appear-
ance and fibrillar content (Figures 2A and 2B). 
Thus, the outermost section forms a continuous 
cover composed of different electrodense zones 
(Figures 2A and 2B). In particular, under the free 
surface of the shell, a band with moderate elec-
tronic density was observed (Figure 2B). Below 
this outer cover, small alveolar fibers (Figure 2A) 
were observed included in a matrix with a granular 
configuration (Campos-Casal et al., 2020). How-
ever, crystalline structures were not recognized, 
a characteristic incompatible with the idea that 
supports the presence of calcium carbonate in soft 
and hard shells of reptiles (Packard and DeMarco, 
1991; Choi et al., 2018). It has been shown that the 
only biomineral present in the eggshell of S. meri-
anae is hydroxyapatite, located in the deep section 
of the eggshell (Campos-Casal et al., 2020). 

Raman spectroscopy

Raman spectroscopy has proven to be an out-
standing tool for the structural characterization 
of glycosaminoglycans (Arboleda and Loppnow, 
2000). Raman frequencies assignments for HA 
and its monomeric components have general-
ly been reported using purified biomolecules 
(Reineck et al., 2003; Meziane-Tani et al., 2006; 
Synytsya et al., 2011). However, in complex bio-
logical systems, the Raman spectrum of numerous 
biopolymers may exhibit shifts in the position of 

Figure 2. TEM photographs of the eggshell surface of S. merianae. A) Note the electrodense zones (arrowheads) and the granu-
lar matrix (asterisk) with small alveolar fibers cross-sectioned (arrows). The insert shows superficial alveolar fibers surrounded 
by interfibrillar material. Scale bar 2 µm. B) Detail of the moderate electron density band (arrowheads) underlying the surface 
of the shell. Scale Bar 1 µm. In both images, the outside of the eggshell is on top.
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their frequencies (± 1-5 -1) as a result of structur-
al and conformational alterations (Bergholt et al., 
2016). 

The analysis of the average Raman spectra of 
plaques and fissures of the eggshell of S. merianae 
are shown in Figures 3A and 3B. The main char-
acteristic bands of the HA were determined in two 
spectral windows: 600-1,800 -1 (Figure 3A), and 
2,800-3,000 -1 (Figure 3B). The Amide I (AmI) 
and Amide III (AmIII) domains of the HA can be 
easily distinguished along with bands associated 
with carbohydrate chains and several amino acid 
vibrations. 

The spectral section between 610-683 -1 con-
tains bands assigned to the out-of-plane vibration 
modes of the groups CCO, CCH, C=O, and CO. 
Although these vibrations have been assigned 
to HA (Synytsya et al., 2011), the Raman spec-
tral analysis of the GlcA suggested that the bands 
at 629 -1 and 665 -1 would be distinctive of this 
constituent monomer of HA (Meziane-Tani et al., 
2006).

The deconvolution of the spectral range between 
850-980 -1 (Figures 4A and 4B) evidenced in the 
average-spectrum of the plaques and the fissures 
the overlapping of frequencies at 864 -1, 899 -1, 
923 -1, 951 -1, 960 -1, and 970 -1, vibrations typical 
of the bonds of the anomeric skeletal configura-
tion (α or β), and the glycosidic bonds (Yuen et 
al., 2009). These frequencies are similar to those 
reported for HA (Bansil et al., 1978; Barret and 
Peticolas, 1979). 

In general, the main spectral features of carbo-
hydrate chains are associated with C-O stretching 
coupled with C-O-H deformation modes, which 
can be observed as a triplet of peaks at 1,025-
1,045 -1; 1,080-1,100 -1 and 1,110-1,152 -1 respec-
tively [Figure 3A; (Bansil et al., 1978; Katzumata 
et al., 1996)]. In particular, the region covering the 
range of 1,000 -1 and 1,100 -1 was associated with 
the vibrations of the saccharide molecular bonds 
that correlate with the C-O-C, C-C-C, and C-C-O 
stretching of the pyranose ring of the GAGs (Park-
er, 1983). Our spectra exhibited bands of C-C and 

Figure 3. Average-spectrum of plaques and fissures. A) Representative Raman average-spectra between 300-1,800 cm-1. The 
graph indicates the tentative assignments of the HA in plaques and fissures. Amino acid frequencies are indicated with an ar-
rowhead. B) Representative Raman average-spectra between 2,800-3,000 cm -1. C) Microphotography of the outer surface of 
the eggshell indicating the five sampling points corresponding to average-spectra in images A and B. Scale Bar 100 µm.
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C-O stretching vibrations at 1,044 cm-1, bending 
vibration of C-OH from the acetyl group (~1,094 
cm-1) and a peak formed by bending vibrations of 
C-OH and C-H (1,125 cm-1). In particular, the fre-
quency ~1,094 cm-1 has been assigned to the sym-
metric and antisymmetric vibrations of the β-gly-
cosidic bonds (Sekkal et al., 1995; Alkrad et al., 
2003) of the HA. Besides, the ~1,125 cm-1 band is 
considered an outstanding marker for the determi-
nation of this biopolymer, considering that this vi-
bration is exclusive of glucose derivatives (Bansil 
et al., 1978). A medium intensity peak, represen-
tative of bending vibrations of CH2 at 1,205 cm-1, 
was also determined in both average spectra. 

On the other hand, it was possible to establish 
a second spectral region (Fig. 3A) corresponding 
to the AmIII complex (1,215-1,350 cm-1). In ef-
fect, in this vibrational segment, bands were deter-
mined at 1,243 cm-1 belonging to the irregular or 
disordered domains (random coils), and at 1,328 
cm-1 features of the saccharide moiety reported 
for the N-acetyl-monosaccharides (Bansil et al., 
1978; Oleinikov et al., 1999). On the other hand, 
the vibrations representative of the asymmetric 
and symmetric bending of the C-H3 groups of the 
HA were distinguished at 1,373 cm-1 and 1,449 
cm-1 respectively (Kotzianova et al., 2015). 

The broad AmI spectral region between 1,600 
cm-1 and 1,700 cm-1 (Kitagawa and Hirota, 2006; 
Rygula et al., 2013), observed in our spectra, con-
sists of overlapping vibrations related to carbon-
yl group stretching reported for HA (Kotzianova 
et al., 2015). The spectral deconvolution of this 
region (Figs. 5A and B) in both average-spectra 
of the eggshell revealed vibrations at 1,600 cm-1, 
1,630 cm-1, 1,636 cm-1, 1,655 cm-1 and 1,664 cm-1 
respectively. In particular, the frequencies of the 
shoulders at ~1,600 cm-1 and ~1,630 cm-1, have 

been suggested as representative of the asymmet-
ric COO- stretching of the HA (Synystsya et al., 
2011; Essendoubi et al., 2016). Also, the band at 
1,655 cm-1 would distinguish the vibrations of the 
C=C groups and the C=O groups of AmI of this 
biopolymer (Synystsya et al., 2011).

The second spectral window analyzed between 
2,800-3,000 cm-1 (Figure 3B), contains two bands 
at 2,904 cm-1 and 2,933 cm-1 respectively. In-
deed, these vibrations represent the C-H and N-H 
stretches of the HA (Donghui et al., 2006; Essen-
doubi et al., 2016). 

In addition to the characterization of the amides 
bands of HA, there are additional characteristics 
in the Raman spectra that allow the description of 
the protein environment as a function of the amino 
acid side chains (Rygula et al., 2013).

Indeed, Figure 3A shows a prominent Raman 
band ~503 cm-1, which can be assigned to the S-S 
stretching mode of cysteine (Cys) and cystine res-
idues (Widjaja and Garland, 2010). This vibration 
confirms that the conformation of the C-C-S-S-C 
group is gauche-gauche-gauche, largely stable 
conformation (Edwards et al., 1998). Two other 
pure components vibrations associated with the 
C-S stretching of Cys and cystine residues are 
resolved with a prominent band at 641 cm-1 and 
a shoulder at ~663 cm-1 respectively (Akhtar and 
Edwars, 1977; Widjaja and Garland, 2010). In our 
spectra, an overlap of the ~663 cm-1 band with 
the frequency at 665 cm-1 of the HA could be ob-
served.

On the other hand, the characteristic Fermi 
doublet of the tyrosine (Tyr) is distinguished at 
829/854 cm-1, along with two additional vibrations 
at 1,173 cm-1 and 1,617 cm-1 (Zhu et al., 2011). Fi-
nally, the characteristic vibrations of proline (Pro) 
and hydroxyproline (Hyp) were recognized at 408 

Figure 4. Decomposition of the Raman spectra between 850-980 cm-1 of plaques (A) and fissures (B).
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cm-1, 876 cm-1, and 1,554 cm-1 respectively (Zhu 
et al., 2011).

The comparison of the relative intensities of the 
HA bands in the average-spectrum of the plaques 
and the fissures using the t-test indicates the ab-
sence of significant differences (P = 0.4308) in 
the distribution of HA and provides additional 
evidence to the histochemical studies, confirming 
that this biopolymer forms a continuous biofilm 
on the outer surface of the eggshell of S. merianae.

Many of the physiological effects of HA are re-
lated to its molecular weight (Hascall et al., 2004; 
Medina et al., 2006). Indeed, the HA of low mo-
lecular weight stimulates gene expression in mac-
rophages, chondrocytes and some epithelial cells 
(Euppayo et al., 2015; Jariyal et al., 2020). On the 
contrary, the HA of high molecular weight charac-
teristic for its viscoelastic properties (Gřundělová 
et al., 2015) modulates the hydration of tissues, 
the osmotic balance (Salwowska et al., 2016) and 
organizes the ECM (Manou et al., 2019).

Raman spectroscopic studies of the HA with dif-
ferent molecular weights showed that the intense 
peak observed at ~1,661 cm-1 in the HA of 1,200 
kDa reveals a remarkable widening and reduction 
in the spectral intensity compared to the HA of 31 
kDa (Alkrad et al., 2003). By analogy, the band at 
1,664 cm -1 in the average-spectrum of the plaques 
and the fissures, would be similar to the vibration-
al profile of the HA of high molecular weight de-
scribed in those studies. Although the results pre-
sented here do not offer information related to the 
molecular weight of HA on the outer surface of the 
eggshell of S. merianae, it is remarkable that the 
vibrational frequency in our spectra at 1,243 cm-1 
and 1,664 cm-1 are characteristic of the irregular 
or disordered domains of the AmIII and AmI com-

plex respectively (Rizo et al., 2016). Although be-
ing a linear molecule, in aqueous solution, the HA 
of medium and high molecular weight show an 
expanded random coil conformation (Chakrabarti 
and Park, 1980; Scott et al., 1991) optimal forma-
tion that provides local rigidity and high viscosity 
(Ingr et al., 2017). Also, the size of the random 
coils can be modified by the pH and the concen-
tration of salts in the medium, characteristics of a 
flexible polyelectrolyte (Lapĉik et al., 1998), ca-
pable of bridging transient hydrogens with water 
molecules (Almond, 2005; Blundell et al., 2006). 
In vivo studies using Raman spectrography have 
shown that high molecular weight HA applied to 
skin samples remains on the surface forming a 
film that prevents water loss by evaporation (Es-
sendoubi et al., 2016).

Several polymers studied as antibacterial coat-
ings, HA shows a proven ability to produce bio-
films capable of reducing bacterial adhesion 
(Romanò et al., 2017). Research related to the 
bacteriostatic effect of HA showed that this bio-
polymer with high molecular weight presents sig-
nificant antiadhesive and inhibiting properties of 
bacterial growth (Pirnazar et al., 1999; Chen et al., 
2019). Similar results were obtained by Carlson et 
al. (2004) comparing the bacteriostatic properties 
of HA with collagen Type I and hydroxyapatite, 
materials widely used in the manufacture of bio-
matrixes.

Considering the high sensitivity of the S. meri-
anae egg to variations in the hydric environment 
of the nest and the absence of a calcareous coating 
(Campos-Casal et al., 2020), the HA cover in a 
hydrated environment would create a viscoelas-
tic hydrogel that also to preserve the developing 
embryo against desiccation, it would participate 

Figure 5. Decomposition of the Raman spectra of plaques (A) and fissures (B) corresponding to the vibration of the AmI 
complex.
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in the protection, lubrication, and stabilization 
of the shell surface. Besides, due to its high mo-
lecular weight and its rheological properties, HA 
would form a stable biofilm, with characteristics 
of a semi-plastic fluid (Sudha and Rose, 2014), 
adaptable to the volumetric changes experiment-
ed by eggs with a flexible shell during incubation 
(Andrews, 1997). As we have indicated, studies 
related to the chemical composition of the S. me-
rianae egg revealed a band of hydroxyapatite lo-
cated in the deep zone of the shell (Campos-Casal 
et al., 2020). Thus, considering the physicochem-
ical characteristics of the incubation environment 
(Manes, 2016), it would be fair to consider that 
HA and hydroxyapatite could work synergistically 
to protect the egg against bacterial invasion. The 
presence of HA as a bioconstituent in reptile egg-
shell has not been previously reported. However, 
in birds, this biopolymer is abundant in the shell 
membranes, and the calcified matrix (Liu et al., 
2014; Vuong et al., 2017).

Sexton et al. (2005) compared the amino acid 
distribution of eggshells from 24 lizard species, 
6 snake species, and 4 external groups, including 
birds eggshells, and determined that eggs with 
flexible shells, such as S. merianae, contain sig-
nificantly higher levels of Pro and Tyr compared 
to rigid shells. As we have shown, the vibrational 
frequencies of both amino acids are present in the 
eggshell of S. merianae. Significantly, collagen 
contains high proportions of Hyp, Pro and glycine 
(Sorushanova et al., 2019), a biopolymer which 
in interaction with GAGs gives the distinctive 
mechanical resilience of the ECM (Holmes et al., 
2018).

Studies of the structure and mechanical prop-
erties of the Taiwan cobra snake eggshells (Naja 
atra) showed that the flexible eggshells of this 
reptile behave like a highly extensible elastomer; 
quality determined by the presence of keratin and 
collagen fibers (Chang and Chen, 2016). Like-
wise, collagen I, V, and X have been characterized 
in the eggshell of birds (Arias et al., 1991).

Scanning electron microscopy analysis showed 
that the S. merianae eggshell is made up mostly of 
alveolar fibers, and a double layer of compact fi-
bers, both immersed in an amorphous interfibrillar 
matrix (Campos-Casal et al., 2020). On the other 
hand, the elemental composition of the S. meri-
anae eggshell using energy-dispersive X-ray spec-
troscopy determined a high sulfur content in the 
surface layer (Campos-Casal et al., 2020), higher 

than that reported for eggs of other reptiles with 
calcified shells (Choi et al., 2018). Although the 
ultrastructural studies only provide morphologi-
cal evidence, it is reasonable to consider that the 
Pro and Hyp amino acid residues determined in 
the Raman spectra in the present work are repre-
sentative of collagen fibers. In complex biological 
systems such as ECM, HA provides mechanical 
stability to collagen fibers (Wang et al., 2010). On 
the other hand, considering that sulfur is usually 
bound to proteins associated with keratin (Rogers 
et al., 2006), sulfur amino acids such as Cys and 
its dimer characterized in our spectra, offer con-
sistent evidence to consider keratin and/or sulfated 
GAGs as constitutive biopolymers of the S. meri-
anae eggshell.

A hydrophilic HA covering and protective vis-
coelastic on the outer surface of the S. merianae 
eggshell exposes a new perspective to establish 
correlations between the conditions of humidity 
and incubation temperature. Indeed, both physi-
cal parameters are substantial to develop artificial 
incubation technologies with a productive impact. 
On the other hand, the results presented here pro-
vide complementary evidence on the adaptations 
by which reptile eggs and embryos control the ex-
change of water with the incubation environment.

Conclusions

For the first time, an HA coating is identified in 
the eggshell of a reptile. The qualities of HA to 
maintain conformational rigidity and hydrophilic-
ity; added to the ability to absorb impacts and 
interact with other GAGs and fibers of the ECM 
make it an important biomaterial. Therefore, the 
eggshell of S. merianae could offer an innovative 
platform for the study of structural, extensible, 
and lightweight biomaterials.
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