
82 Antonieta Kuz: Computational thinking: an analysis through structured programming using Scratch

RECyT / Year 25 / Nº 39 / 2023

RECyT
Year 25 / Nº 39 / 2023 / 82–90
DOI: https://doi.org/10.36995/j.recyt.2023.39.010

Computational thinking: an analysis through structured
programming using Scratch

Pensamiento computacional: un análisis a través de la programación estructurada
mediante Scratch

Antonieta Kuz1, *

1- Universidad Metropolitana para la Educación y el Trabajo (UMET). Sarmiento 2037, C1044 AAE, Buenos Aires. Argentina.

*E-mail: zukanto@hotmail.com

Received: 05/04/2022; Accepted: 19/08/2022

Abstract

In recent years, numerous initiatives have emerged to develop computational thinking. Computational thinking
and programming are closely related they are both tools for working with algorithmic concepts. ICTs and, and
specifically computer programs with a playful orientation for teaching programming are relevant since they take
into consideration aspects related to the educational environment. Game-based learning is a complement that
allows taking advantage of the playful component of games to train computational thinking and, therefore, various
others skills. Scratch is one of the most used tools to teach programming, through visual and playful programming
languages that seek to promote computational skills that involve problem solving, through active and constructive
learning. In this study, theoretical foundations of structured programming are analyzed based on simple computing
concepts such as handling sequences, control instructions such as loops and conditionals, and their adaptation
using Scratch. For this article, a qualitative analysis is presented, supported by descriptive research. The partial
findings, at this point, suggest the usefulness of applying video games to train computational thinking skills. In this
way, opens the possibility of proposing extended uses of other interactive games such as Lightbot, PilasEngine,
Pilas Bloques.

Key words: Computational Thinking; Computer Programming; Videogame; Virtual Learning; Information Technology;
Programming Language.

Resumen

En los últimos años, han surgido numerosas iniciativas para desarrollar el pensamiento computacional. El
pensamiento computacional y la programación están estrechamente vinculados dado que ambos son un medio
para trabajar con conceptos algorítmicos. Las TICs y en particular los programas computacionales con orientación
lúdica para la enseñanza de la programación son relevantes dado que tienen cuenta aspectos vinculados al
entorno educativo. El aprendizaje basado en juegos es un complemento que permite aprovechar el componente
lúdico de los juegos para formar el pensamiento computacional y, por lo tanto, diversas habilidades. Scratch es
una de las herramientas más utilizadas para enseñar programación, mediante lenguajes de programación visuales
y lúdicos que busca promover habilidades computacionales que involucran la resolución de problemas, a través
del aprendizaje activo y constructivo. En este estudio se analizan los fundamentos teóricos de la programación
estructurada en función de conceptos informáticos simples como el manejo de secuencias, instrucciones de
control como bucles y condicionales, y su adecuación mediante Scratch. Para este artículo, se presenta un análisis
cualitativo, sustentado en una investigación descriptiva. Los hallazgos parciales aquí sugieren la pertinencia del
uso de videojuegos en el marco de la formación del pensamiento computacional. Se abre la posibilidad de pensar
en usos extendidos a otros juegos interactivos como Lightbot, PilasEngine, Pilas Bloques.

Palabras clave: Pensamiento Computacional; Programación Informática; Videojuego; Aprendizaje Virtual; Tecnología
de la Información; Lenguaje de Programación.

Antonieta Kuz: Computational thinking: an analysis through structured programming using Scratch 83

RECyT / Year 25 / Nº 39 / 2023

Introduction and theoretical framework

Currently learning process has changed with the
incorporation of ICTs. In the information society, the
technologies that facilitate the creation, distribution and
manipulation of information besides different areas of
knowledge currently work in a multidisciplinary way
in the processing and analysis of information. A very
important factor is the digitization of the economy and the
transformation of work, which, on the one hand, promotes
the emergence of new professions and the creation of
new jobs and, on the other hand, leads to the modification
of some professions or existing jobs by changing the
methods, the way in which the tasks are carried out, the
requirements of the job and, as a consequence, the needs
necessary to carry it out. In recent years, computational
thinking has been introduced into the curriculum of
educational systems, due to a fundamental issue that
involves the emergence of new basic skills. Computational
thinking is part of the educational debate, as with other
key skills, reading, writing and math skills and traditional
key competencies (Soria Valencia & Rivero Panaqué,
2019). New technologies are an integral part of life and
it is a certainty that they will play a leading role in your
future as well. In a world increasingly governed by digital,
programming is essential knowledge. Programming is one
of the new challenges faced by teachers in the classrooms
in the different sections of schooling, since programming
does not simply mean coding in a programming language
but also implies including computational thinking to solve
problems, in the different subjects of the school trajectory.
Understanding that programming is not a closed skill that
only serves the purpose of creating code for a computer
by a programmer or computer scientist, but rather serves
to develop skills that allow the student to project new
possibilities.

Within the spectrum of educational resources, a
particular type is educational software whose didactic
purpose is to teach programming and promote
computational thinking in playful environments, through
the generation of dynamic pedagogical environments.
The teaching and learning processes supported by the use
of Scratch promote and strengthen educational practices
and enable interactivity in an exploratory and creative
way through collaborative projects in different contexts.
Computational thinking can be integrated into the
curriculum through programming. Learning programming
requires understanding abstract concepts that are not
usually easy to assimilate due to the lack of concrete
references that allow the student to be experienced. This
is the reason why a wide variety of educational software
has been developed with didactic purposes and whose
main objective is to facilitate the learning of programming
concepts, but which involve cognitive skills oriented to
problem solving and Computational Thinking. (Morris et

al 2017).
Many of these software are developed in predominantly

visual environments with visual blocks, which is a
widely used strategy to learn programming and develop
computational thinking and the combination of graphics,
animations, photos, music, etc. Knowing a detailed
description of the Scratch tool is relevant, given that as a
playful element it accompanies the diversity of initiatives
related to the teaching and didactics of programming.
For this reason, in this work we will make an analysis
of structured programming through Scratch. The rest of
the article is structured as follows: in section 2 we detail
the theoretical framework and the aspects involved. In
section 3 we detail the study case. In section 4 we detail
the discussion and present the conclusions of this work.

Computational Thinking

Computer Science is an academic discipline with their
own body of knowledge such as Computational Thinking.
Wing (2006, 2010) defined Computational Thinking as
follows:

The thought process involved in formulating a
problem and its solutions in such a way that the solutions
are represented in a way that they can be brought to an
information processing agent.

Solve problems, design systems and understand human
behavior, based on the fundamental concepts of computer
science. Computational thinking includes a wide variety
of mental tools that reflect the breadth of the field of
computing ... [furthermore] it represents a universal
attitude and skills that all individuals, not just computer
scientists, should learn and use (2006, p. 33)

Phillips (2008) describes it as “the integration of
the power of human thought with the capabilities of
computers”.

Rojas López (2019) defines computational thinking as:
A type of analytical thinking, a set of cognitive and

metacognitive strategies paired with processes, skills and
computing methods (analysis, abstraction, decomposition,
heuristic reasoning, planning, programming, model, pattern
recognition, algorithm), its essence is to think about data
and ideas, and to use and combine these resources to solve
problems, design systems and understand human behavior,
in such a way that a computer can carry out the solution
effectively.

Computational Thinking is within the conceptual
foundations of computing. The International Society
for Technology in Education (ISTE) (Sykora, 2021)
understands Computational Thinking as a problem
solving process that includes (but is not limited to) the
formulation of problems; data collection and analysis;
representation of data through abstractions such as models
and simulations; automated solutions through algorithmic

84 Antonieta Kuz: Computational thinking: an analysis through structured programming using Scratch

RECyT / Year 25 / Nº 39 / 2023

thinking; identification, analysis and implementation of
possible solutions in order to achieve the most efficient
and effective combination of resources and steps; and the
generalization and transfer of this problem-solving process
to a wide variety of contexts.

Currently, several authors indicate that the use of
Computational Thinking is oriented to problem solving,
and is strongly related to Computer Science, and specific
skills.

Table 1: Conceptual frameworks of computational thinking. [Source:
Adell et al. (2019)]

Concepts of Computational
Thinking ISTE (2021)

Formulate computational solution problems
Organize logically and analyze data
Abstractions, including models and
simulations Algorithmic thinking
Efficiency evaluation and correction
Generalization and transfer to other domains
Supported by: provisions such as trust to
deal with complexity, persistence in difficult
problems, tolerance for ambiguity, open
problems, communication and collaboration.
Harness the power of technological methods to
develop and test solutions, Collect data, Analyze
data, Represent data, Decomposition, Abstraction
Algorithms Automation, Testing, Parallelization,
Simulation, Supported by: empowered
learner, digital citizen, knowledge builder,
designer, communicator, collaborator

New frameworks for
studying and assessing
the development of
computational thinking
(Brennan & Resnick, 2012)

Computational concepts: Sequences, Event Loops
Conditional Parallelism, Operators, Data,
Computational practices, Being incremental
and iterative, Rehearse and debug, Reuse and
remix, Abstract and modularize, Computational
perspectives Express, Connect, Ask

Computing at
School Concepts of
Computational Thinking
(Csizmadia et al., 2015)

Computing,
Logical reasoning, Algorithmic thinking,
Decomposition, Generalization, Patterns,
Abstraction, Representation, Evaluation
Supported by: reflection, coding, design,
analysis and application techniques.

Concepts and processes
with a high level of
consensus among
experts (Delphi1) (Rich
& Langton, 2016)

Concepts Conditional logic, Efficiency, Hashing
(summary functions), Iterators, Parallelization,
Segmentation, Recursion, Loops, Variables,
Functions, Matrices, Operators, Event
management, Communication processes,
Debugging, Group problem solving, Negotiation
Data organization, Decomposition of problems.

Common Aspects in a
Selected Literature Review
(Corradini et al., 2017)

Mental processes: Algorithmic thinking Logical
thinking, Problem decomposition, Abstraction,
Pattern recognition, Generalization.
Methods: Automation Data collection,
analysis and representation Parallelization,
Simulation Evaluation, Programming.
Practical: Experiment, iterate, retouch
Test and debug
Reuse and mix Cross-cutting skills:
Create, Communicate and collaborate,
Reflect, learn, meta-reflection
Tolerance of ambiguity

Learning programming requires understanding abstract
concepts that are not usually easy to assimilate due to the
lack of concrete references that allows the student to be
experienced. Another relevant research on Computational
Thinking is that carried out by Ortega Ruipérez & Asensio
Brouard, (2021) in which they evaluate it from an approach
oriented to the resolution of complex problems, and this
is used as a problem-solving strategy. In their article,

1- Delphi, is a technique that seeks to reach a level of expert
consensus

they validate the theoretical construct of an evaluation
instrument to measure computational thinking resolution
by solving complex problems. According to Zapata-Ros
(2015), he considers that computational thinking deals with
a new literacy, digital literacy, and as with other key skills:
reading, writing and mathematical skills, it is required to
teach it from the early stages of development. Recently,
Zapata-Ros (2019) considers unplugged computational
thinking a new term. Indicating unplugged computational
thinking refers to a set of activities that are developed
to promote skills in children that can be evoked later,
to promote computational thinking. He also considers
that it is important to promote learning programming
progressively from a playful approach. Likewise, in the
research of Balladares Burgos et al (2016) they propose a
relationship between complex thinking and computational
thinking through a reflection on education based on the
conception of uncertainty of complex thinking and the
connecting elements between a thought complex and
computational thinking based on connectives and the
challenges of a society 3.0.

Educational computer games

There is a wide range of educational software in
recreational environments and, within them, we find
those that have the purpose of teaching programming in
educational environments. These programs are designed
with the purpose of ensuring that students have simple
programming platforms without becoming professional
environments.

According to the report United Nations International
Children’s Emergency Fund (UNICEF) (2018), it indicates
that play is an essential learning strategy since they affirm
that “play is one of the most important ways in which
young children obtain essential knowledge and skills”.
Both development and learning are holistic in nature,
carrying them out in a school environment is a complex
task; however, through play they can incentivize all areas
of development, including motor, cognitive, social and
emotional.

The digital game through educational and didactic
software has been implemented as a resource in different
fields of knowledge, giving rise to a large number of
contributions of great variety. The implementation of
digital games for the teaching of programming allows
us to understand and see the game as a crucial factor for
improving the quality of education, due to the results and
the change in attitude observed in the student in the face
of the frustration that it frequently generates learning the
logic of programming. From the pedagogy of programming
teaching, the game contributes to significantly improve
its processes, to achieve the objectives set for an activity
or program, and in the social construction of knowledge
determined by aspects such as cognitive, affective and

Antonieta Kuz: Computational thinking: an analysis through structured programming using Scratch 85

RECyT / Year 25 / Nº 39 / 2023

communicative. Digital games can have a positive impact
on learning specifically in the areas of science, technology,
engineering and mathematics. Moreover, games contribute
to the development of critical thinking skills such as
decision making and problem solving in motivating
environments that let you try and experiment.

The pedagogical bases and theoretical principles of
computational educational games is constructionism.
Considering the idea that learning is a process where
students are building it through knowledge and from
the daily experiences of their environment continuously
(Soleimani, 2019). Constructivism is also related to the
maker philosophy, which consists of students building
their own knowledge and being able to solve problems
independently and autonomously, so that they can
experiment, create, make mistakes and rectify, learning
from the process and their mistakes (Gibbons & Snake-
Beings, 2018)

Scratch

New technologies are an integral part of life and it is
a certainty that they are occupying a leading place. In a
world increasingly governed by digital, programming
is essential knowledge. There are tools for learning
programming and that contribute to the development of
skills. Programming is one of the new challenges faced
by teachers in the classrooms in the different sections
of schooling, since programming does not simply mean
coding in a programming language but also implies
including Computational Thinking to solve problems
(Lye & Koh, 2014), in the different subjects of the school
trajectory. Many of these software are developed in
predominantly visual environments with blocks, which is
a widely used strategy to learn programming and develop
Computational Thinking and the combination of graphics,
animations, photos, music, etc.

Using a programming language, instructions can
be performed and programmed to obtain results from
a computer. Most programming languages are purely
textual; that is, they use text sequences that include words,
numbers, and punctuation marks, similar to written natural
languages. Syntax is the visible part of a programming
language and defines the set of rules that must be followed
when writing the source code of programs to be considered
correct. The syntax of a programming language is defined
as the set of rules that must be followed when writing the
source code of programs to be considered correct for that
programming language. Learning to use the syntax presents
certain difficulties until correctly handling a programming
language, since there are languages that present a complex
syntax. Given the difficulties in programming languages
and taking up the constructionist ideas (Müller, 2020)
embodied in the Logo language, the Lifelong Kindergarten
research group of the MIT (Massachusetts Institute of

Technology) media laboratory developed the platform
for Scratch programming. This educational tool has great
potential since one of its functions is that through proper
pedagogical use, students develop creative skills, logical,
deductive reasoning.

Scratch is a block-based programming language (Hu,
et al. 2021), with a grammar and syntax such as the C
language, Java or Python among others. Blocks have
a visual grammar and their combination rules have the
same role as syntax in text-based languages. Developers
over time have made improvements to the tool and a large
community has been generated to encourage collaboration
among members as a source of ideas and improvements.
Besides Scratch versions were evolving since 2007 to 2020
with the Scratch version 3.11.1.

Figure 1: Screenshot of scratch.

The blocks represent instructions (see Figure 1) with
imperative mode texts in several languages and include
control structures, event handling, use of variables,
messages between objects, movement and sound. It also
has a library of scenes and objects to which material can
be added from the other platforms.

Methodology

Through this case study, we seek to establish
a relationship between Scratch programming and
Computational Thinking through syntactic analysis from
the structured programming paradigm. This research
is based on a qualitative analysis, and is supported by
a descriptive and documentary research, seeking to
appreciate and reflect descriptively on the case and its
possible contributions to the knowledge of the phenomenon
of teaching programming and computational thinking in a
playful environment such as Scratch.

Results

Based on this case study, we see that the blocks have
a visual grammar and their combination rules have the
same role as the syntax in text-based languages. The blocks

86 Antonieta Kuz: Computational thinking: an analysis through structured programming using Scratch

RECyT / Year 25 / Nº 39 / 2023

represent instructions with imperative mode texts in several
languages and include control structures, event handling,
use of variables, messages between objects, movement and
sound.

It is relevant to notice that it is not enough just to
consider the blocks, it is also important to take into
consideration the library of scenes and objects to which
material imported from other platforms can be added. In
order to allow the learner to give his or her own impression
and originality, it is possible to edit images, take photos,
record and edit video sounds.

In this way, they can build original interactive projects
for the student, such as video games, stories, songs,
choreography, and simulations, among others. In addition,
through a visual programming language like Scratch,
students build their own code through scenes, characters,
music and other components. As a consequence, this
arouses great interest in the students, leading the teacher
to delve even deeper into the possibilities of the tool.

In order to pose and solve a problem, it is necessary
to use the programming control structures. Programming
involves understanding the programming language, and
using it to write codes. In addition, to understand the basics
of programming with Scratch, it is important to analyze
the control structures that control the flow of program
execution. They influence readability and ease of writing.
Increasing the control that the programmer has over a
program, and therefore growing reliability.

An algorithm is defined as “a step-by-step procedure
for solving a problem or accomplishing some end”
(Merriam-Webster, s.f). Furthermore, any algorithm can
be designed and implemented using only three types of
control structures. Böhm & Jacopini (1966) demonstrated
the structured programming theorem that specifies that
all algorithms can be built using sequential, conditional
(selection) and repetitive control structures. Therefore,
three types of logical structures can be combined to build
programs that provide a solution to various issues that are
made: sequence, selection or conditionals and iteration or
cycles.

Analysis of control structures with flowchart

As it is shown in Figure 2 the sequential structure
seen is the simplest of all, it simply indicates to the
processor that must consecutively execute a list of actions
(which can be, at turn, other control structures); to build
a sequence of actions. Figures 3 and 4 show through
representative schematics as pseudocode and flowcharts
are useful to express programming structures, which are
a schematic representation of the sequences of a program
and graphically represent the algorithms. On the one hand,
we have the conditional statement that is used when an
algorithm wants to establish that an action or sequence
of actions is only executed if a certain condition is met.

Conditional statements can be of several types: single
conditional statement, double or alternative conditional
statement, or multiple conditional statements. Iterative
or loop structure is used when the execution of an action
or sequence of actions must be repeated several times.
A condition will determine when the iterations should
continue and determines the continuity of the loop that
can be defined before or after the sequence of actions.
Algorithms created to solve problems can consist of simple
sequences of instructions (Rahman et al 2020).

Figure 2: Sequential structure programming.

Selection or conditional structures control whether
a statement or sequences of sentences are executed,
depending on whether or not a condition or expression is
fulfilled logic. The possible actions to be carried out are
mutually exclusive; that is, it can only be run one at a time
within the entire structure.

Figure 3: Sequential structure programming.

The repetitive or iterative structure allows, as its name
suggests, repeating an action (or group of Actions); this
repetition can be carried out a predetermined number of
times or depend on the evaluation of a logical expression.
There are three types of repetitive structures: from-to,
while, and repeat-to (Figure 4).

Antonieta Kuz: Computational thinking: an analysis through structured programming using Scratch 87

RECyT / Year 25 / Nº 39 / 2023

Figure 4: Repetitive structure programming.

Analysis of Control structures with Scratch

Scratch’s role as a programming learning tool is very
important since it allows you to create and share programs.
As Scratch is very dynamic software, it is possible to
work with the same control structures mentioned in the
previous section, we detail the blocks to express the control
structures. Table 2 shows the structures of control with
Scratch, the use of colored blocks allows and facilitates
many concepts expressed in sentences to become tangible,
thereby facilitating the learning of abstract and complex
concepts that are not easy to assimilate due to the lack of
concrete references (Moreno-León et al. 2020). Detailed
control structures and instructions, which can be associated
with each object, are grouped into blocks according to their
functionality. The blocks are snapped together to create the
programs or scripts and the instructions are executed in
order from top to bottom.

The graphical interface can change the background and
a series of movable objects. Each object is called a sprite

and can have one or more disguises; that is, a different
aspect that the same object can take (for example, make
a character walk). At the bottom of the scene is an area
that shows the thumbnails of all the sprites in the project.
The central panel of the graphical interface has three tabs:
programs, costumes, and sounds. Selecting each of these
tabs will change the panel on the right, where the user can
see and modify the costumes (images), sounds, or behavior
(the program) of the chosen sprite.

Analysis of a didactic game

In this example, the book series “Choose your own
adventure” is emulated, where telling a story in which
readers are the main protagonists and actively participate in
decision-making, interacting with other characters, making
choices, is emulated. We present the example developed
by Fernández Casal (2016) where defines “Choose your
own Adventure” as an educational proposal to develop
in Scratch that is integrated with Language Practices and
honors this kind of stories. This example focuses on the
idea that students choose a story or tale from the language
area. After that, they will modify the story to transform it
into a format ‘choose your own adventure’. The story must
be analyzed using concept maps or other resources in order
to know exactly decision taking moments in the story,
the main and secondary characters. Then, it is possible
to convert the story to graphic scenes with characters,
dramatizing situations. Once located in this instance, the

Table 2: Control structures using Scratch.

88 Antonieta Kuz: Computational thinking: an analysis through structured programming using Scratch

RECyT / Year 25 / Nº 39 / 2023

idea is to design the bifurcations; that is, the different paths
that the story can take. The choice of one path or another
will be taken at runtime by another child or adult to whom
we show the story we are putting together. In this way,
children are designing and implementing human-computer
interactions.

From the pedagogy of programming teaching, the
game contributes to significantly improve its processes,
to achieve the objectives set for an activity or program,
and in the social construction of knowledge determined
by aspects such as cognitive, affective and communicative.
Conditional control structures, the use of variables
and events are used to carry out the bifurcations. In
the example, the program is modeled as a sequence
of instructions whose execution produces a series of
actions that change or transform the initial state of the
environment, going through various intermediate states
to reach a final state, which represents the solution to the
problem.

Contextual analysis of Scratch

Advantages:

• It allows students to focus on the logic of
programming by abstracting from the grammar of the
language itself.

• It allows you to apply programming principles
without having to worry about the syntax of a traditional
programming language or having to face the intimidation
of a professional programming language.

• It seeks that the instructions are at a visual level,
by means of assembling blocks, which have different
instructions so that programming is reduced to selecting
and orderly assembling the instructions to be executed.

• It is a playful environment since it includes characters,
sound and interactions that allow the generation of
programs built with elements of structured basic
programming.

• It favors student learning since it is based on the
following characteristics: collaborative learning, critical
thinking, the development of creative qualities, visualizing,
expressing, exploring and understanding.

• It has simple interfaces, with which the interaction
makes them accessible and is oriented to the rapid
understanding of the students, also the environments are
motivating, mainly oriented to learning to through the
game.

• It promotes critical thinking in the context of
exploration and discovery and independence of the
skill level of students, both at the level of reading
comprehension and computer experience.

• It allows students to achieve the formulation of
simple problems and the construction of strategies for their

resolution, including their decomposition into small parts,
using ordered sequences of instructions, using creativity
and experimenting with error as part of the process.

• It favors learning through its features and, considering
that there are a wide variety of very complete tools, it is
important to bear in mind that these types of resources
allow the representation and understanding of different
concepts related to programming.

Disadvantages

• It should be used according to the ages and the
didactics to be applied according to the context.

• It is important to bear in mind the design of narratives
of the didactic activities and adapt them to combine with
language and the digital medium and build knowledge in
a playful and creative framework.

• The number of sentences is reduced: although visual
programming with blocks, the code is created by dragging
blocks and placing it in the coding area, it is not necessary
to write the sentences, it only requires moving the blocks,
then the number of categories of blocks as the number of
blocks within each category are reduced, so that only the
most basic of the syntax of any programming language
are preserved.

• To better understand the importance of each teaching
material, it is necessary to take into account the benefits
they provide for understand if they adapt to the needs,
expectations and benefits, this assessment and perception
depends on the teacher and the practical application
they want to do as well as the context and technological
resources that are available.

Discussion

The digital game through educational and didactic
software has been implemented as a resource in different
fields of knowledge, giving rise to a large number of
contributions of great variety. The implementation of
digital games for the teaching of programming allows
us to understand and see the game as a crucial factor for
improving the quality of education, due to the results and
the change in attitude observed in the student in the face of
the frustration that commonly generates learning the logic
of programming.

With three types of basic instructions, not only
statements or problems can be developed. It is possible
to add and include the development of playful activities,
as we saw through the construction of educational video
games, reinforcing programming knowledge on the pillars
that we mentioned, within a constructivist framework of
reference for learning. As we can see in the example,
the program that the students developed is a sequence
of instructions whose execution produces a series of

Antonieta Kuz: Computational thinking: an analysis through structured programming using Scratch 89

RECyT / Year 25 / Nº 39 / 2023

actions that change or transform the initial state of the
environment, going through various intermediate states to
reach a final state, which represents the solution of the
problem. Besides, as we have discussed, Scratch allows
students to use the fundamental control structures for the
writing of any algorithm in addition to being able to apply
other concepts such as variables and events.

We can see through the analysis that Scratch, being a
playful environment, allows students to concentrate on the
logic of programming, abstracting from the grammar of
the language itself and applying programming principles
without having to worry about the syntax of a traditional
programming language or having to face the intimidation
of a professional programming language. Likewise, it
seeks that the instructions are at a visual level, by means of
assembleable blocks, which have different instructions so
that programming is reduced to selecting and assembling
the instructions to be executed in an orderly manner. In an
accessory way, we can see that with the example being a
playful environment they include characters, sound and
interactions that allow generating programs built with
elements of structured basic programming.

In this way, we can see as a consequence that it favors
the learning of students since it is sustained in features like
collaborative learning, critical thinking, the development
of creative qualities, visualizing, expressing, exploring and
understanding, through of a simple interface, with which
the interaction makes them accessible and is oriented to the
rapid understanding of the students, also the environments
are motivating oriented to learning.

Conclusion

The students are considered as digital natives, since
they were born and are immersed in an environment
surrounded by technology, and are internalized in the use
of computers and smartphones. However, just because a
student is using technology does not mean that they know
how to code. Programming is vital knowledge for a world
ruled by digital, which is not a closed skill that only serves
the purpose of creating code, but also serves to develop
other skills and learn new ones.

Learning programming with Scratch is no different than
other learning processes and the flexibility allows teachers
to implement visual concept lessons. That is, the teacher
can use the tool to create animations that help to visualize
difficult concepts of physics, chemistry or mathematics,
but also put together stories using scenarios and characters,
bringing them to life and proposing different interactions.
Educational software, designed for students to program,
can be a means through which a contact between
technology and the area of education can be established.
The purpose of this research is to analyze and carry out a
review of the different proposals that have as a strategy
the learning of programming as pedagogical tools that

support the improvement of cognitive and problem-solving
skills in students who are in school. Moreover, being in
an increasingly digitized world, it is no longer enough to
teach the student to be a user of the available technology,
knowing how to program helps to better understand the
environment, having the fundamentals of structured
programming regardless of the software tool used. The
inclusion of programming in a transversal way requires
a permanent update which is essential in the construction
of an updated and relevant education to the times in which
it is developed. We can foresee that current programming
platforms will continue to evolve and greatly simplify
the way they work, to make it easier to adapt and use by
digital natives. We can think then, that these technological
resources represent instruments to create situations and
address content that allow students to experience changes
and transformations. Finally, those who have more access
to technology expand the possibility allowing them to
have greater access to learning and, in fact, participate
in what digital citizenship is. In future works, we will
analyze other educational tools to address programming
and computational thinking such as Lightbot, PilasEngine,
Pilas Bloques and so on.

References

1. Adell, J. S., Llopis, M. A. N., Esteve, M. F. M., y Valdeolivas, N. M. G.

(2019). El debate sobre el pensamiento computacional
en educación. RIED. Revista Iberoamericana de Edu-
cación a Distancia, 22(1), 171-186. doi: http://dx.doi.
org/10.5944/ried.22.1.22303

2. Balladares Burgos, J., Avilés Salvador, M. y Pérez Narváez, H.

O. (2016) Del pensamiento complejo al pensamiento
computacional retos para la educación contempo-
ránea. Sophia: Colección de Filosofía de la Educa-
ción, 21,143-159. https://doi.org/10.17163/soph.
n21.2016.06

3. Böhm, C. & Jacopini, G. (1966). Flow diagrams, turing ma-
chines and languages with only two formation rules.
Communication ACM, 9, (5), 366–371. https://doi.
org/10.1145/355592.365646

4. Brennan, K. & Resnick, M. (2012). New frameworks for stud-
ying and assessing the development of computational
thinking. Proceedings of the 2012 annual meeting of
the American Educational Research, Vancouver, Ca-
nada. Retrieved August 19, 2021, from https://bit.
ly/3tV11wV

5. Corradini, I., Lodi, M., & Nardelli, E. (2017). Conceptions and
misconceptions about computational thinking among
Italian primary school teachers. In Proceedings of
the 2017 ACM Conference on International Compu-
ting Education Research (ICER ‘17). Association for
Computing Machinery, New York, NY, USA, 136–144.
https://doi.org/10.1145/3105726.3106194

6. Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby,

90 Antonieta Kuz: Computational thinking: an analysis through structured programming using Scratch

RECyT / Year 25 / Nº 39 / 2023

C., & Woollard, J. (2015). Computational Thinking. A guide
for Teachers. Computing At School. http://community.
computingatschool.org.uk/files/6695/original.pdf

7. Fernández Casal, F. (April 29, 2016) Proyecto para aprender
programando: Elige tu propia aventura. Procomun.
Retrieved August 19, 2021, from http://procomun.
educalab.es/es/articulos/elige-tu-propia-aventura-con-
scratch

8. Gibbons, A. & Snake-Beings, E (2018) DiY (Do-it-Yourself)
pedagogy: a future-less orientation to education.
Open Review of Educational Research, 5(1), 28-
42. doi: 10.1080/23265507.2018.1457453

9. Hu, Y., Chen, C.H., & Su, C.Y. (2021). Exploring the Effective-
ness and Moderators of Block-Based Visual Program-
ming on Student Learning: A Meta-Analysis. Journal
of Educational Computing Research, 58(8), 1467–
1493. https://doi.org/10.1177/0735633120945935

10. ISTE (Agust 12, 2021) Computational Thinking Competen-
cies. Integrate CT across disciplines, with all students:
CT competencies for educators. Retrieved August 19,
2021, from https://bit.ly/3kqBj04

11. Lye, S. Y. & Koh, J. (2014). Review on teaching and learning
of computational thinking through programming: What
is next for K-12?. Computers in Human Behavior, 41,
51-61. https://doi.org/10.1016/j.chb.2014.09.012

12. Merriam-Webster. (n.d.). Algorithm. In Merriam-Webster.
com dictionary. Retrieved August 19, 2021, from
https://bit.ly/3EFt6Nx

13. Moreno-León, J., Robles, G. and M. Román-González, M. (2020).

Towards Data-Driven Learning Paths to Develop
Computational Thinking with Scratch. IEEE Transac-
tions on Emerging Topics in Computing, 8(1), 193-
205. doi: 10.1109/TETC.2017.2734818.

14. Morris, D., Uppal, G., & Wells, D. (2017). Assessing pupil pro-
gress in computational thinking and coding. In Tea-
ching computational thinking and coding in primary
schools (pp. 154-168). Learning Matters, https://www.
doi.org/10.4135/9781529714647.n1

15. Müller, A. (2020). What is constructivism? Cons-
tructing Practical Reasons, 6–32. doi:10.1093/
oso/9780198754329.003.0002

16. Ortega Ruipérez, B., & Asensio Brouard, M. (2021). Evaluar
el Pensamiento Computacional mediante Resolu-
ción de Problemas: Validación de un Instrumento de
Evaluación. Revista Iberoamericana De Evaluación
Educativa, 14(1), 153–171. https://doi.org/10.15366/
riee2021.14.1.009

17. Phillips, P. (2008). Computational Thinking: A Problem-
Solving Tool for Every Classroom. Retrieved August
19, 2021, from https://bit.ly/3nU9RKc

18. Rahman, M. M., Sharker, M. H. & Paudel, R. (2020) An Effective
Approach to Teach an Introductory Computer Science
Course with Computational Thinking and Flow-Chart
Based Visual Programming. 2020 IEEE Frontiers
in Education Conference (FIE), 1-7. doi: 10.1109/

FIE44824.2020.9273930.
19. Rich, P. J., & Langton, M. B. (2016). Computational Thin-

king: Toward a Unifying Definition. En J. M. Spec-
tor, D. Ifenthaler, D. G. Sampson, & P. Isaias (Eds.),
Competencies in Teaching, Learning and Educational
Leadership in the Digital Age (pp. 229-242). Cham:
Springer International Publishing. doi: https://doi.
org/10.1 007/978-3-319- 30295-9_14

20. Rojas López, Arturo (2019). Escenarios de aprendizaje per-
sonalizados a partir de la evaluación del pensamiento
computacional para el aprendizaje de competencias de
programación mediante un entorno b-Learning y gami-
ficación [Tesis Doctoral]. Universidad de Salamanca.

21. Soleimani, A. (2019). Computational Design Thinking
and Thinking Design Computing. In 2019 Reynolds
Symposium: Education by Design. Portland, Oregon.
https://doi.org/10.21428/f7d9ca02.b7daadcc

22. Soria Valencia, E., & Rivero Panaqué, C. (2019). Pensamiento
computacional: una nueva exigencia para la educa-
ción del siglo XXI. Revista Espaço Pedagógico, 26(2),
323–337. doi:10.5335/rep.v26i2.8702

23. Sykora, C. (April 23, 2021) Computational Thinking for
All. ISTE. Retrieved August 19, 2021, from https://
bit.ly/3AySVfW

24. UNICEF (2018). Aprendizaje a través del juego Refor-
zar el aprendizaje a través del juego en los progra-
mas de educación en la primera infancia, Editorial
UNICEF. Retrieved August 19, 2021, from https://uni.
cf/39pdFLm

25. Wing, J. (2006). Computational Thinking. View Point.
Comunication of ACM. 49, 3. 33-35. https://doi.
org/10.1145/1118178.1118215

26. Wing, J. (2010). Computational Thinking: What and
Why? Retrieved August 19, 2021, from https://bit.
ly/3nU0RFa

27. Zapata-Ros, M. (2015). Pensamiento computacional: Una
nueva alfabetización digital. Revista de Educación a
Distancia (RED), (46). doi:10.6018/red/45/4

28. Zapata-Ros, M. (2019). Pensamiento computacional des-
enchufado. Education in the Knowledge Society
(EKS), 20, 29. https://doi.org/10.14201/eks2019_20_
a18

