INTRODUCTION

The genus *Nasua* Storr is represented by two species, the white-nose coati (*Nasua narica* Linnaeus) and the South American Coati (*Nasua nasua* Linnaeus) (Wilson & Mittermeier, 2009). *Nasua narica* is currently distributed in the south of North America, Mexico, Colombia, Peru and Ecuador, while *Nasua nasua* is found in South America from Colombia and Venezuela to Uruguay (Gompper, 1995; Gompper & Decker, 1998; Wilson & Mittermeier, 2009). In Argentina, it is found in Tucumán, Jujuy, Chaco, Formosa and the northeast of Santa Fe (Gompper & Decker, 1998; Pautasso, 2008, Wilson & Mittermeier, 2009; Barquez et al., 2006; Cannevari & Vaccaro, 2007). The first appearances for the genus were recorded in North America in the Late Miocene of Florida (Baskin, 1988) and the Early Pliocene of Texas (Dalquest, 1978; Baskin, 1998). In South America, the first appearances for the genus were recorded in North America in the Late Miocene of Florida (Baskin, 1988) and the Early Pliocene of Texas (Dalquest, 1978; Baskin, 1998).
In the present contribution, we describe the first record of Nasua and the species *N. nasua* from the Delta of the Parana River, Buenos Aires Province, Argentina. We provide alternative hypotheses explaining this finding outside the current distribution of the species.

MATERIALS AND METHODS

We compared the fossil specimen (INAPL-AF2, Instituto Nacional de Antropología y Pensamiento Latinoamericano) with 23 specimens of *Nasua nasua* deposited in the Division of Mastozoologia from the Museo Argentino de Ciencias Naturales “Bernardo Rivadavia”. We measured the 23 specimens of *Nasua nasua*, both male and females, and a specimen of *Nasua narica*, using a digital caliper of 0.01 mm. The measurements taken were the length (Lc1), width (Wc1) and height (Hc1) of the lower canine (Supplementary data 1). We plotted the measurements in a scatter plot graph to illustrate the determination of the sex of INAPL-AF2.

We compared the different bioclimatic conditions (supplementary data 2) obtained from the latest historical (not fossil) databases (Hijmans et al., 2005) for the southernmost location where *Nasua nasua* is recorded at the Rio Negro river, Uruguay, and the Arroyo Fredes archaeological site, Buenos Aires, Argentina. A similar analysis was made using the bioclimatic conditions suggested for the Last Glacial Maximum (LGM) (Collins et al., 2004).

SYSTEMATIC PALEONTOLOGY

Order **Carnivora** Bowdich, 1821
Family **Procyonidae** Gray, 1825
Genus **Nasua** Storr, 1780

Type species. Viverra nasua Linnaeus, 1766.

Nasua nasua (Linnaeus, 1766)
Figs. 2.A–D, 4.A–B

Studied material. An isolated left lower canine (INAPL-AF2) (Fig. 2.1–4).

Stratigraphic and geographic provenance.
Arroyo Fredes Archaeological site (34° 13’ 50.7” S 58° 23’ 32.5” W), San Fernando, Buenos Aires Province, Argentina (Fig. 1).

The Arroyo Fredes archaeological site is located on a fluvial bank in the island sector of the San Fernando district, which belongs to Delta and Paraná Islands ecoregion (*sensu* Burkart et al., 1999). The archaeological site was formed by Amazonian horticulturalist groups, historically known as guaranies (Loponte & Acosta,
The archaeological record includes pottery, lithic artifacts, faunal remains and primary human burials. All these materials were arranged in the 10-35cm thick current soil horizon (horizon A). Underneath, the C horizon is composed by a substratum of fluvial sands and clays, which was the basis for the development of fluvial banks and is sterile in archaeological materials. Three radiocarbon dates show a temporal range from 690-370 14C years BP for this occupation (see Loponte et al., 2011 for details). INAPL-AF2 was recovered in the digging unit 6 (DU6). A capybara ($Hydrochaeris hydrochaeris$) bone fragment from DU6 was dated in 402 ± 40 14C years BP ($\delta^{13}C$ -12‰) 1431-1525 years AD (AA 77309; calibrated according to Fairbanks et al., 2005; see Loponte et al., 2011). INAPL-AF2 comes from an archaeofaunal context together with marsh deer ($Blastocerus dichotomus$), capybara ($H. hydrochaeris$), coypus ($Myocastor coypus$) and fishes ($Characiformes$ and $Siluriformes$) (Acosta & Mucciolo, 2009; Musali, 2010; Loponte et al., 2011). All these taxa are typical from the insular sector of Paraná Delta present in the area since 2500 years BP, suggesting an ecological situation similar to the current one (Loponte et al., 2012).

Description. The specimen is a complete left lower canine with a high degree of wear in its distal margin, which forms a strong vertical facet. The canine presents one cusp and one root and it is subtriangular in cross-section. Its crown is high and narrow with two grooves on its labial and lingual sides. A shallow labial groove extends on the lower half of the canine. The lingual groove is deeper and extends to the tip of the tooth. The root also presents two shallow lateral grooves which run longitudinally on the lingual and labial sides. These lateral grooves are independent from the grooves of the crown. The enamel occupies half of the tooth length, except in the mesial side of the crown where it occupies less than the half of the tooth length.

DISCUSSION

The morphology of INAPL-AF2 with its subtriangular outline and the labial and lingual lateral grooves is coincident with the features observed in the specimens of the genus $Nasua$. Among other procyonids, grooved canines were mentioned in the Potosinae (Ahrens, 2012; Decker & Wozencraft, 1991). In $Potos$ and $Bassaricyon$ both labial and lingual grooves can be observed (Ahrens, 2012). However both species are considerably smaller than $Nasua nasua$. Also, the canines of both species show a rounded cross-section. The canines of $Nasuella olivacea$ are grooved as in the genus $Nasua$ (Ahrens, 2012) but this species is characterized for being smaller than $Nasua$. Other orders of carnivoran mammals have conical lower canines that are subelliptical in cross-section and the grooves on the crown, when present, are shallower than the grooves of $Nasua$. The crowns of the upper canines of $Nasua$ are flat in cross-section and the base of the crown is wider than the tip which gives the element a triangular shape. Lower canines of $Nasua$ are subtriangular in cross-section and the crown is mesially curved and distally straight. The morphology of INAPL-AF2 is coincident with the morphology of the lower canines of $Nasua$. The size of the element is in the range of the size of the specimens of $Nasua nasua$ here measured (Fig. 3).
Nasua nasua shows a strong sexual dimorphism with the females smaller than the males (Gompper & Decker, 1998). The anatomy of the lower canines differs between sexes: in the males it is tall with two distinct longitudinal grooves on the labial and lingual sides of the crown; while in the females, it is lower than in the males with a shallower labial groove. The specimen described here is coincident with the morphology observed in the males of Nasua nasua. The size of INAPL-AF2 is coincident with the size of the males of Nasua nasua (Fig. 3).

Nasua nasua and Nasua narica are similar in size and the degree of sexual dimorphism (Gompper & Decker, 1998; Gompper, 1995). The morphology of the lower canine is similar in Nasua nasua and Nasua narica and we cannot discriminate both species on the basis of this element (Gompper, 1995). Considering that Nasua narica is restricted to Central and North America and the Northwestern part of South America (Colombia and Ecuador) (Gompper, 1995; Wilson & Mittermeier, 2009) we suggest that INAPL-AF2 could tentatively correspond to Nasua nasua given its current distribution (Gompper, 1995; Wilson & Mittermeier, 2009).

Nasua nasua inhabits a great number of forested habitats including rainforest, cloud forest, xeric Chaco, dry scrub forest and gallery forest from Colombia and Venezuela, reaching Uruguay, the south of Brazil, and the north part of Argentina (Gompper and Decker, 1998; Pautasso, 2008; Wilson & Mittermeier, 2009). Its austral limit is the Rio Negro River, Uruguay (González & Martínez-Lafranco). INAPL-AF2 was collected in the zone of the Paraná River delta and it represents the first record of Nasua nasua in the Buenos Aires province. The distance between the Arroyo Fredes archaeological site and the southernmost record of the species in Argentina is ca. 1000 Km (Gompper & Decker, 1998; Pautasso, 2008; Wilson & Mittermeier, 2009). However, this archaeological site is ca. 100 km from the southernmost record of the species considering its current distribution, in the north of Rio Negro River in Uruguay (González & Martínez-Lafranco, 2010).

Two hypotheses can explain the presence of Nasua in the Delta Region of Buenos Aires: (1) climatic or (2) human causes. Similarities between current and past (at least for the LGM) climatic conditions recorded in the joint of the Rio Negro and Uruguay rivers in Uruguay and the Arroyos Fredes archaeological site (compared using the databases from Hijmans et al., 2005 and Collins et al., 2004; Supplementary data 2), the short distance between both localities, and the effect of corridor caused by the gallery forests of the Paraná

Uruguay rivers (Fracassi et al., 2010; Bo et al., 2002) makes likely the presence of Nasua nasua in the Paraná Delta. Contemporary ecological conditions in the Paraná Delta were already
established by 2300 years ago, according to the material recorded from the non-ceramic level of Islas Lechiguanas archaeological site (Loponte et al., 2012). Archaeofaunal record until the XVI century, including that from the Arroyo Fredes, does not show different compositions which can sustain climate changes (Acosta, 2005; Loponte, 2008; Arrizurieta et al., 2010; Loponte et al., 2011). However, during the Late Holocene, in particular between 700-400 years BP, more humid conditions were registered in the Pampean region and in South Eastern Uruguay, which was correlated with the Medieval Warm Period (Tonni et al., 1999; Tonello & Prieto, 2010; Stutz et al., 2006; Del Puerto et al., 2011). Warmer and more humid climatic conditions as a product of the MWP could have favored the presence of Nasua in the Parana River delta.

On the other hand, the presence of *N. nasua* in Arroyo Fredes also can be explained by anthropic activities. It is known that the Uruguay River was one of the main venues for Amazonian horticultural groups, which peopled the Paraná Delta and the upper estuary of the Río de la Plata (Loponte et al., 2011). The distribution of *N. nasua* greatly overlaps that of the guaraní archaeological record, and therefore human transport could be a possible factor to explain the presence of the tooth in the area under study. In addition, ethnographic information indicated that the historic guaraníes captured and tamed coatis (Azara, 1802; Remorini, 2009). Teeth handling is a behavior well documented in different hunter-gatherer groups of the Low Paraná wetland (Acosta et al., 2013). However, the specimen under study does not show macroscopic, intentional modifications. Analyzed under high magnifications, the enamel of the canine has a particular microwear formed by narrow, superficial and smooth striations disposed in a crossed multidirectional pattern (Fig. 4). Similar microwear was experimentally obtained in bone items simulating transport and manipulation (cf. D’Errico, 1993). Faunal teeth and other anatomic units were recorded as amulets in many hunter-gatherer contexts, being their meaning related to utilitarian and symbolic factors. Frequently, as can be the case under study, these items are not modified but set aside, conserved and transported among people (see Acosta et al., 2013 for a detailed discussion).

CONCLUSIONS

The specimen described here (INAPL-AF2) can be assigned to the genus *Nasua*. Given the current distribution of the species of *Nasua* (*Nasua narica* and *Nasua nasua*) we tentatively assigned the specimen to the species *Nasua nasua*. INAPL-AF2 represents the first record of *Nasua* in the Buenos Aires Province and the southernmost record of the genus. The current and past climatic similarities between the Rio Negro in Uruguay and the Arroyo Fredes archaeological site, and the corridor effect caused by the gallery forests in the Paraná River delta can explain the presence of *Nasua* in the Buenos Aires province. On the other hand, its presence in the site can be explained by human transport by the guaraníes. With the current evidence both hypotheses are equally likely and further evidence is needed to clarify this issue.

ACKNOWLEDGMENTS

We thank Isabel Vilanova for helping us in
finding part of the bibliography. We thank S. Echarri for his helpful comments on the manuscript. We thank Mauro Schiaffini for his help with the paleoclimatic data. Part of this research was funded by PICT-2012-1261; PICT2011-2035; PIP2012-11220110100565.

BIBLIOGRAPHY

Gray, J.E. 1825. Outline of an attempt at the disposition of the Mammalia into tribes and families with a list of the genera apparently appertaining to each tribe. Annalia Philosophica New Series 10: 337-334.

Hoffstetter, R. 1963. La faune Pleistocène de Tarija.

Recibido 11-II-2015
Aceptado: 10-VI-2015
Supplementary data 1. List of specimens measured to perform the quantitative comparisons of size and sex determination.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Species</th>
<th>Sex</th>
<th>Lc1</th>
<th>Wc1</th>
<th>Hc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACN 51.62</td>
<td>Nasua</td>
<td>M</td>
<td>8.13</td>
<td>5.69</td>
<td>21.76</td>
</tr>
<tr>
<td>MACN 50.543</td>
<td>Nasua</td>
<td>M</td>
<td>7.25</td>
<td>5.66</td>
<td>22.42</td>
</tr>
<tr>
<td>MACN 50.74</td>
<td>Nasua</td>
<td>M</td>
<td>7.63</td>
<td>5.82</td>
<td>18.4</td>
</tr>
<tr>
<td>MACN 50.72</td>
<td>Nasua</td>
<td>M</td>
<td>7.72</td>
<td>6.19</td>
<td>19.64</td>
</tr>
<tr>
<td>MACN 6.5</td>
<td>Nasua</td>
<td>M</td>
<td>6.32</td>
<td>5.93</td>
<td>17.5</td>
</tr>
<tr>
<td>MACN 50.539</td>
<td>Nasua</td>
<td>M</td>
<td>6.51</td>
<td>6.55</td>
<td>20.17</td>
</tr>
<tr>
<td>MACN 45.21</td>
<td>Nasua</td>
<td>M</td>
<td>7.67</td>
<td>6.32</td>
<td>22.32</td>
</tr>
<tr>
<td>MACN 25360</td>
<td>Nasua</td>
<td>M</td>
<td>7.15</td>
<td>5.95</td>
<td>17.25</td>
</tr>
<tr>
<td>MACN 52.15</td>
<td>Nasua</td>
<td>M</td>
<td>7.79</td>
<td>6.23</td>
<td>21.99</td>
</tr>
<tr>
<td>MACN 50.69</td>
<td>Nasua</td>
<td>M</td>
<td>6.92</td>
<td>6.5</td>
<td>21.5</td>
</tr>
<tr>
<td>MACN 50.78</td>
<td>Nasua</td>
<td>M</td>
<td>7</td>
<td>5.7</td>
<td>20.34</td>
</tr>
<tr>
<td>MACN 50.79</td>
<td>Nasua</td>
<td>M</td>
<td>8.3</td>
<td>5.63</td>
<td>19.64</td>
</tr>
<tr>
<td>MACN 4240</td>
<td>Nasua</td>
<td>M</td>
<td>6.85</td>
<td>5.76</td>
<td>21.5</td>
</tr>
<tr>
<td>MACN 25362</td>
<td>Nasua</td>
<td>M</td>
<td>6.7</td>
<td>5.28</td>
<td>20.56</td>
</tr>
<tr>
<td>MACN 50.80</td>
<td>Nasua</td>
<td>M</td>
<td>6</td>
<td>5.62</td>
<td>21.06</td>
</tr>
<tr>
<td>MACN 47187</td>
<td>Nasua</td>
<td>H</td>
<td>3.74</td>
<td>3.17</td>
<td>9.61</td>
</tr>
<tr>
<td>MACN 51.43</td>
<td>Nasua</td>
<td>H</td>
<td>4.34</td>
<td>3.41</td>
<td>9.02</td>
</tr>
<tr>
<td>MACN 31.270</td>
<td>Nasua</td>
<td>H</td>
<td>3.69</td>
<td>3.09</td>
<td>11.15</td>
</tr>
<tr>
<td>MACN 50.71</td>
<td>Nasua</td>
<td>H</td>
<td>3.81</td>
<td>3.43</td>
<td>9.46</td>
</tr>
<tr>
<td>MACN 39.449</td>
<td>Nasua</td>
<td>H</td>
<td>3.81</td>
<td>3.22</td>
<td>10.87</td>
</tr>
<tr>
<td>MACN 50.53</td>
<td>Nasua</td>
<td>H</td>
<td>4.14</td>
<td>3.37</td>
<td>8.11</td>
</tr>
<tr>
<td>MACN 50.535</td>
<td>Nasua</td>
<td>H</td>
<td>4.25</td>
<td>3.02</td>
<td>10.42</td>
</tr>
<tr>
<td>MACN 25.116</td>
<td>Nasua</td>
<td>M</td>
<td>5.31</td>
<td>5.88</td>
<td>18.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locality</th>
<th>Bio1</th>
<th>Bio3</th>
<th>Bio5</th>
<th>Bio6</th>
<th>Bio12</th>
<th>Bio15</th>
</tr>
</thead>
<tbody>
<tr>
<td>North of the Rio Negro river</td>
<td>170</td>
<td>47</td>
<td>302</td>
<td>56</td>
<td>930</td>
<td>21</td>
</tr>
<tr>
<td>Arroyo Fredes</td>
<td>169</td>
<td>43</td>
<td>293</td>
<td>62</td>
<td>980</td>
<td>23</td>
</tr>
</tbody>
</table>

A Present

b = 1.0541
R² = 0.9992

<table>
<thead>
<tr>
<th>Locality</th>
<th>Bio1</th>
<th>Bio3</th>
<th>Bio5</th>
<th>Bio6</th>
<th>Bio12</th>
<th>Bio15</th>
</tr>
</thead>
<tbody>
<tr>
<td>North of the Rio Negro river</td>
<td>135</td>
<td>46</td>
<td>265</td>
<td>23</td>
<td>888</td>
<td>21</td>
</tr>
<tr>
<td>Arroyo Fredes</td>
<td>131</td>
<td>41</td>
<td>251</td>
<td>27</td>
<td>1004</td>
<td>23</td>
</tr>
</tbody>
</table>

B Título del gráfico

b = 1.1247
R² = 0.9975