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THE SUBVARIETY OF Q-HEYTING ALGEBRAS GENERATED
BY CHAINS

LAURA A. RUEDA

ABSTRACT. The variety QH of Heyting algebras with a quantifier [14] corre-
sponds to the algebraic study of the modal intuitionistic propositional calculus
without the necessity operator. This paper is concerned with the subvariety
C of QH generated by chains. We prove that this subvariety is characterized
within QH by the equations V(z Ay) ~# Vz AVy and (z — y)V (y — z) =~ 1.
We investigate free objects in C.

1. INTRODUCTION AND PRELIMINARIES

Distributive lattices with a quantifier were considered as algebras for the first
time by Cignoli in [7] who studied them under the name of Q-distributive lattices.
A Q-distributive lattice is an algebra (L;V,A,0,1,V) of type (2,2,0,0,1) such
that (L;V,A,0,1) is a bounded distributive lattice and the unary operation V
satisfies the following conditions, for any a, b € L: V0 = 0, a A Va = a,
V(aAVb) =VaAVb and V(aVb) =VaVVb. These conditions were introduced
by Halmos [9] as an algebraic counterpart of the logical notion of an existential
quantifier.

Various further investigations have been carried out since [7] (see R. Cignoli [8],
H. Priestley [13], M. Adams and W. Dziobiak [1], M. Abad and J. P. Diaz Varela
[2] and A. Petrovich [11]). As a natural generalization, the operation of quantifi-
cation was considered for Heyting algebras in [3] and [15]. A Heyting algebra is an
algebra (H;V, A, —,0,1) of type (2,2,2,0,0) for which (H;V,A,0,1) is a bounded
distributive lattice and for a, b € H, a — b is the relative pseudocomplement of
a with respect to b, i.e., a Ac < b if and only if ¢ < a — b. It is known that
the class of Heyting algebras forms a variety. An important subvariety of Heyting
algebras is the class of linear Heyting algebras [5]. A linear Heyting algebra is a
Heyting algebra that satisfies the equation (z — y) V (y — x) ~ 1. Throughout
this paper H will denote the category of Heyting algebras and Heyting algebra
homomorphisms and Hy, will denote the subcategory of linear Heyting algebras.

A @Q-Heyting algebra is an algebra (H; V) such that H is an object of H and V is
a quantifier on H, that is, V is a unary operation defined as for @-distributive lat-
tices. Monadic Boolean algebras are the simplest examples of ()-Heyting algebras.
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The class of @Q-Heyting algebras forms a variety, which we denote QH. The subva-
riety of QH characterized within QH by the equation (x — y) V (y — x) ~ 1, that
is, the subvariety of linear (-Heyting algebras will be denoted by QH ;.. Q-Heyting
algebras were first introduced in [14] and have been investigated in [14, 15, 3].

In this paper we investigate the subvariety C of the variety of ()-Heyting algebras
generated by chains. We characterize C by identities in Section 2 and we investigate
free objects in this variety in Section 3.

We will usually use the same notation for a variety and for the algebraic category
associated with it. And, similarly we will use the same notation for a structure
and for its universe.

Recall that Heyting algebras are algebraic models of the intuitionistic proposi-
tional logic and that the study of extensions of Intuitionistic Propositional Calculus
(IPC) reduces to the study of subvarieties of the variety H. The language of in-
tuitionistic modal logic (MIPC) is the language of IPC enriched with two modal
unary operators of necessity O and of posibility <. The algebraic models of
MIPC are the monadic Heyting algebras.

Now, in MIPC the operators O and < are independent from each other, that
is Op < =<O=-p and Op «— —O-p are not theorems in MIPC. Hence, the set of
theorems of the propositional calculus without of the necessity operator O, called
the O-free fragment of MIPC is different from that of MIPC. Similarly, the set of
theorems of the propositional calculus without of the possibility operator <, called
the O-free fragment of MIPC is different from that of MIPC.

It turns out that the behaviour of the O-free fragment of MIPC is very much
similar to that of MIPC. However, surprisingly enough, the O-free fragment of
MIPC behaves pretty diferent from MIPC.

@-Heyting algebras are the algebraic models of the O-free fragment of MIPC,
that is, Q-Heyting algebras are the O-free reducts of monadic Heyting algebras.

For a poset X and ¥ C X, let (Y] = {u : u < v for some v € Y} and
[Y)={u : u > v for some v € Y}. We write [u), (u] instead of [{u}), ({u}]
respectively. We say that Y is decreasing if Y = (Y], increasing if Y = [Y') and
convex if Y = (Y] N[Y). A mapping ¢ is order preserving if ¢(u) < ¢(v) whenever
u < .

In order to describe the dual category of QH we recall that a Priestley space is
a triple (X;<,7) such that (X; <) is a partially ordered set, (X;7) is a compact
topological space, and the triple is totally order-disconnected (that is, for u, v € X,
if u £ v then there exists a clopen increasing U C X such that «w € U and v ¢ U).
Priestley showed that the category of bounded distributive lattices and lattice
homomorphisms is dually equivalent to the category of Priestley spaces and order
preserving continuous functions (see the survey paper [12]).

A Q-Heyting space (X; E) (see [7, 14, 15]) is a Priestley space (X; <, 7) together
with an equivalence relation E defined on X such that (i) (Y] is clopen for every
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convex clopen Y C X, (it) VgU € D(X) for each U € D(X), where VgU = {v:
vEu for some u € U} and D(X) is the lattice of clopen increasing subsets of X,
and (i7i) the blocks of E are closed in X. For a € H, let o(a) C X = X(H)
denote the clopen increasing set that represents a, where X (H) is the set of prime
filters of H, ordered by set inclusion and with the topology having as a sub-basis
thesets o(a) ={P € X(H) : a€ P} and X(H)\o(a) fora € H. If a,b € H then,
under the duality, @ — b corresponds to the clopen increasing set X \ (o(a) \ o(b)].

For Q-Heyting spaces (X; E) and (Y; E'), a Q-Heyting morphism is a continuous
order-preserving mapping ¢ : X — Y such that ¢([u)) = [¢(u)) and Ve }(V) =
0 YV V), for each V € D(Y).

It can be proved in the usual way that the category of Q-Heyting algebras and
homomorphisms is dually equivalent to the category of @-Heyting spaces and Q-
Heyting morphisms [14, 15]. For each @Q-Heyting algebra (H; V) the corresponding
Q-Heyting space is (X (H); Ey), where E = By = {(P,Q) € X(H)?: PNV(H) =
Q NV(H)}. Conversely, if (X;FE) is a Q-Heyting space, the corresponding Q-
Heyting algebra is (D(X); Vg), where Vg is defined as in (44).

2. THE VARIETY C

In this section we will study the subvariety C generated by chains within QH.
Observe that if (H; V) € C, then H € H, that is, C C QH C QH. Consequently,
CE@—yVy—z)~1

Recall that in the variety of Heyting algebras, congruences are determined by
filters. Precisely, if H € H and F is a filter of H, then 0 = {(a,b) € H x H :
(@ — b)A(b— a) € F} is a congruence on H, and the correspondence F' +— Op
establishes an isomorphism from the lattice of filters of H on C'ony H, the lattice
of congruences of H. If ' is generated by an element a, F' = [a), we write 0, = 0j,).

Observe that if C is a Heyting chain and F is a filter of C, (a,b) € 0 if and
only if a = b or a,b € F. Then, Congy (C;V) = Cony C. As a consequence of
this, we have that if C'is a chain, (C; V) is a subdirectly irreducible algebra in QH
if and only if C' is a subdirectly irreducible algebra in H, that is, C' has a unique
dual atom.

A quantifier V on an algebra H € QH is said to be multiplicative if V(a A b) =
Va A Vb, for every a,b € H.

Let M be the subvariety of QH characterized by the equation V(z A y) =~
Va A Vy.

Lemma 2.1. If (H;V) € M, Congy (H;V) = Cony H.

Proof Let p € Cony H and (a,b) € Op, ie, (a — b)A(b — a) € F. As
aA(a—b)=aANb, then Va A V(a — b) < Vb, that is, V(e — b) < Va — Vb.
So (@ —=b)Ab —a) <V((a—=>bAb—a)=Ve—>bAVDb—a) <
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(Va — Vb) A (Vb — Va). Thus (Va — Vb) A (Vb — Va) € F, so (Va,Vb) € 0.
Therefore, Op € Congy (H; V) . [

Observe that C = {V(z Ay) = Vx AVy, (r — y)V (y — z) = 1}, that is,
CCMNQH;. Let us see that C = MNQOH .

Lemma 2.2. Let (H;V) be a subdirectly irreducible algebra in M N QHy,. Then
H is a chain.

Proof Let (H;V) € M N QHy be a subdirectly irreducible algebra. Then
Congn (H;V) = Cony H and hence H is subdirectly irreducible in H, that
is, H has a unique dual atom. Since for every a,b € H, (a — b)V (b — a) = 1,
thena —b=1o0rb— a=1,that is, a < bor b <a. So H is a chain. |

Corollary 2.3. C=MNQH.

As a consequence of this corollary we have that C is characterized within QH
by the identities V(z Ay) = Ve AVy and (z — y) V (y — =) =~ 1.

The following theorem characterizes the dual space of an algebra in M.

Theorem 2.4. Let (H;V) be a Q-Heyting algebra, let (X (H); E) be the associ-
ated Q-Heyting space and {E;}icr the partition of X (H) determined by E. Then,
(H; V) € M if and only if each E; has exactly one mazimal element.

Proof Suppose that (H;V) € M and there exists ig € I such that Ej;, has two
maximal elements M, N, M # N. Let a € H be such that M € o(a) and N ¢ o(a).
For each P € o(a) N E;,, we have that N ¢ P. Thus there exists bp € H such that
N € o(bp) and J € X \ o(bp). Consequently

o@nE, < |J X\olbp)
Peo(a)NE;,

As o(a) N E;, is closed, by a compacteness argument

o(a)NE;, €| JX\ab) =X \o(\bi)=X\o(b)
=1 =1
and N € o(b). So M € o(a) N E;, and N € o(b) N E;,. This implies that
Ei, € 0(Va A Vb) and consequently o(Va A Vb) N E;, = E;,. On the other hand,
Veo(aAb)NE;, = Vg (c(a)No(b))NE;, =0, which contradicts that (H; V) € M.
Conversely, we know that D(X (H)) € QH. Let us see that Vg o(a)NVg o(b) =
VEeo(aAb). Since Vg is a quantifier, Vgo(a Ab) C Vgo(a) N Vgo(b). Let us
prove the other inclusion. Let P € Vgo(a) N Veo(b) and ig € I such that
P € E;,. Since o(a) N E;, # 0 and o(b) N E;, # 0, if {M;,} = maz E;,, then
M;, € o(a)Na(b) = o(aAb). Therefore E;; C Vgo(aAb) and so P € Vg o(aAb).
|

Lemma 2.5. M is the greatest subvariety of QH such that every filter determines
a congruence.
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Proof Let (H;V) € QH such that (H;V) ¢ M. We are going to construct a
filter in H which does not determine a congruence. From (H;V) ¢ M, there exist
a,b € H such that VaAVb £ V(aAb). Then there exists a prime ideal M such that
V(aAb) € M and Va A Vb & M. Since M is an ideal we have that Va ¢ M and
Vb ¢ M. Consider the filter F' = [a). Then (a A b,b) € O, being that ((a A b) —
b)AN(b— (aAb)) =b— a>a. Let us see that (V(a Ab),Vb) ¢ . Suppose on
the contrary that (V(a Ab),Vb) € Op. Thus Vb — V(a Ab) > a, which implies
that Vb — V(aAb) > Va (*) since the image of V is closed under implication. On
the other hand, Vb A (Vb — V(a AD)) < V(aAb), so VbA (Vb — V(aAb)) € M.
Since M is a prime ideal and Vb ¢ M we have that Vb — V(a A b) € M. This,
together with (*), implies that Va € M, which is a contradiction. |

3. FREE ALGEBRAS

In this section we characterize the free algebra in C with n generators. Following
a path analogous to that of M. Abad and L. Monteiro in [1], we will provide a
method to construct the order set II(n) of all join-irreducible elements of the free
algebra, and as a consequence, we will obtain a formula to compute |II(n)].

It is clear that for any subset X of a chain (C;V), the subalgebra of (C; V)
generated by X is S(X) = XUV(X)U{0,1}. Thus, every n-generated subalgebra
of a chain of C has at most 2n + 2 elements, that is, the class of all chains in C is
uniformly locally finite. So C is generated by a uniformly locally finite class, and
consequently, C is a variety locally finite [6, Theorem 3.7].

If (H;V) € C is a finite algebra, the Q-Heyting space (X (H); <, 7, E) has the
discrete topology and (X (H); <) is anti-isomorphic to the ordered set (II(H); <)
of join-irreducible elements of H. In this section we will use the set TI(H) instead
of X (H) and we will consider the relation E defined on II(H), that is we consider
(TII(H); E). If {E;};cs is the partition determined by E in II(H), we say that
E; < Ej if and only if min E; < min Ej;. This is an order relation.

Theorem 3.1. [10] A Heyting algebra is linear if and only if the family of prime
filters which contain a prime filter is a chain.

Definition 3.2. Let (H;V) € C be a finite algebra. Let p € TI(H) and let By <
o+ < Epgq, such that (p|NE; #0,1<j <r+1, where (p] = {q € II(H) : q < p}.
We say that p has coordinates (m, mq, ..., m,y1), if the chain (p] is of length m+1
and if mj = |(p]NE;|, 1 <j<r+1.

Notice that the set (p] of the previous definition is considered within ITI(H).

Let m be a non negative integer. Let C,, = {0,a1,...,am, 1} be the chain with
m+2 elements. Let V(Cy,) = {bp =0,b1,....,b,,br41 = 1}, 7 < m, with b; < b; for
i < j. Let (b;, bj] be the interval in C,, consisting of the elements a € C,, such that
b; < a <b;. We denote Cpy i, ,....m, ., the algebra (C,,; V), where m; = |(bi—1,bi]|,
i=1,...,r+1.
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Observe that if p € II(H), H/6, is a chain. More precisely, (p] is of length m +1
if and only if H/0, is a chain with m + 2 elements [1, p. 7]. If 7 : H — H/6,, is the
natural homomorphism and ay,...,a,, € H are such that 7(0) < w(a;) < -+ <
m(am) < w(1), then there exist join-irreducible elements ¢, ..., ¢, in H such that
@< <gqm<pand 7(g) = 7w(a;), 1 <i< m. Moreover, taking into account
that ¢;Eq; en II(H) if and only if V¢, = Vg; en H, it follows that p € II(H)
has coordinates (m,my,, ..., my41) if and only if H/0, = Cyym,,...m,,,. Since
Nperi(a)fp is the trivial relation, we have that (H;V) is a subdirect product of the
chains {H/Hp}pEH(H) .

Let L(n) be the free C-algebra with a finite set of generators of cardinal n > 0.
For the sake of simplicity we will write II(n) instead of II(L(n)).

We know that every n-generated subalgebra of a chain of C has at most 2n + 2
elements. Since L(n)/6, is a chain generated by at most n elements, we have the
following

Lemma 3.3. If p € II(n), then |L(n)/0,| <2n+ 2.

If p € TI(n) then from Lemma 3.3, p has coordinates (m,mq,...,m,41), for
some m, 0 <m < 2n and my,...,my+1 € N such that Z;Zi m; =m+ 1.

Consider the following sets:
My =A{bj : [(bj—1,b5][ =1,1 < j <r}

and
N = Cm7m17'“1mr+1 \V(Cm7mla---7m7‘+l)'

For a subset T of Cyy 1y ,...,m,,, tO generate the algebra Ch ... m,.,,, €very non
constant element must be contained in T, that is, N C T'. Besides, every constant
can be obtained from N, except the constants of M;. So we have that T' 2 N U M,
and consequently, |T'| > |N|+ |[Mi|=m —r + |M1| =m — (r — | My]).

For every m, 0 < m < 2n, consider the sets

r+1
Ny(n) ={(m1,...,mpq1) :m; e N;1 < j < 7“+1,ij =m+1,m—r+|Mq| < n}.
j=1

We will denote N, instead of Ny, (n). Observe that No = {(1)}, N1 = {(2), (1,1)}
and No, = {(2,2,...,2,1)} for every n € N, that is, Na,, consists of one (n + 1)-
tuple whose n first coordinates are equal to 2. Moreover, if n > 2, we have that
No={(3),(2,1),(1,2),(1,1, 1)}, but if n =1, Ny = {(2,1)}.

Let Wy ,.comyin (n) = {p € I(n) : L(n)/0, = Cpuym,....;myyr }- 1t is clear that

2n

(n) = | U Wy, ey (1)

m=0 (mq,....,mpry1)EN,

and that I, ;o om, (R) N Hm',m’l,...,m;, (n) =0 for (my,...,my) # (m},....,myp).
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Let Fopmy,....m,.. (n) be the set of all functions f from the set G of free generators
of L(n) into Cyym,.....m,., such that S(f(G)) = Cpm,....m,.,- Observe that every
Frnmi,...ompyi (1) is nonempty, as f € Foymy,.om,, (n) if and only if M; UN C
f(G), that is m — r + | My| < n.

Recall that a filter P in a finite Heyting algebra is prime if and only if P = [p),
where p is join-irreducible element.

If f € Frumy,..om,ys (), f can be extended to a unique homomorphism f from

L(n) onto Crimy,.ompys-  N(f) = {a € L(n) : f(a) = 1} is the kernel of
f, it is well known that N(f) is a prime filter in L(n), so N(f) = [ps), with
P € Woimy,.oomeyy - Thus, for each (my,...,myq1) € Ny, 0 < m < 2n, we have
a function

wm7m17~“7m7‘+1 : Fm7m17~~~1mr+1 (n) - Hm7m1,---7mr+1(n)

defined by ¥ m.,....m,0. (f) = Dy

Lemma 3.4. The following holds 1Ly . ...m, i (M) = [Fomy,.oompin (n)], 0 <
m < 2n, (Mm1,...,Mp11) € Np,.

Proof Let us see that ¢y, m,.....m,,, is onto. For p € Iy ... m,., (n), consider h
the natural homomorphism from L(n) onto L(n)/0, = Crm,,...om,.1> and f = hl
the restriction of h to G. Then S(f(G)) = S(M(G)) = M(L(n)) = Cpmm,,...,m,., and
therefore f € Fry iy, m,,, (n). Let f be the extension of f. Since fl, = f = hl,,

then f = h and therefore ¥y, m,,....m,,. (f) = pf = P
Let us prove that the function ¥, m, ... .m,.., is one-to-one. If the functions f,

f2 € Frpmy,omyq () satisfy N(fi) = N(f2) then there is an automorphism o of
Crn,mi,...,mryq SUCh that oo E = E But the only automorphism of Cp, ..., ps
is the identity, then f; = fo and then f; = f. |

Lemma 3.5.

2n
OIS > i (1)

m=0 (ml,...,mr+1)€Nm

2n
= Z Z |Fm,m1,...,m7v+1(n)|'

m=0 (ml,...,mr+1)€Nm

If NS(a,b) is the number of functions from a set with a elements onto a set with
b elements, then:

NS(a,b) = { Ozf;a—w(’;) (b—i)* ifa>b

ifa<bd
Let | =r — |M;]|. Then, for each (m1,...,my11) € Ny, 0 <m < 2n,
142
[+2
IFrmmamess (0)] = ];) ( i )NS(n,m — 1+ k).
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In particular, for Fo 1(n), m —1 =0 and then |Fo1(n)| = NS(n,0)+2NS(n,1)+
NS(n,2) = 2". For Fis(n), m = 1, r = |M1] = 0 and for Fy11(n), m =
r = |[M;| = 1. So in both cases, m —1 = 1, then |Fi2(n)] = |F111(n)| =
NS(n,1) + 2NS(n,2) + NS(n,3) = 3" —2". And for Fa, 22 . .21(n), m = 2n,
r=mn, |M;|=0,then m —l=nand |Fo,22 21(n) =nl

Consequently,
T[] = [Fo,1 (V)] + [Fro()[ + [Frai (D) + [Fao:1(1)] =2+ 1+1+1=5.
Consider the set

Fn)= | U N ()}

m=0 (ml,...,mr+1)€Nm

If f € F(n), there is a unique m and a unique (mq,...,my+1) € Ny, such that

J € Fomyroomesy (n). If we put o(f) = Ymm,,...om,., (f) we have a one-to-one
mapping from F(n) onto II(n).

The following lemma is immediate (recall that (py] = {¢ € II(n) : ¢ < py}).
Lemma 3.6. py € II(n) has coordinates (0,1) if and only if f(g) € {0,1} for all
geaqG.

As a consequence, the set II(n) has 2" minimal elements.

Lemma 3.7. For 1 < m < 2n, and (m1,...,My41) € Ny, py € II(n) has
coordinates (m,mq,...,mpq1) if and only if N UM; C f(G) € Crmymy,omyis -

Proof From the proof of Lemma 3.4, py has coordinates (m, mq, ..., m,11) if and
only if f € Frymy,...om,,, (1), and from the comment preceding that lemma, this is
equivalent to My UN C f(G) € Crmy ooy - [ |

Remark 3.8. We know that if f € Fp, p,....m, ., (1), the extension homomorphism
f and the natural homomorphism & from L(n) into L(n)/N( f) satisfy h = f. Then
if in H(n)v (pf] = {pla <oy Pmy Pm41 = pf}v we have
B 1 ifzeN(f)
flz) =2 a; ifaxelp)\
0 ifzdip)

The proof of the following lemma will be omitted since it is an adaptation of
that of [1, Lemma 3.13].

We say ¢ covers p if p < ¢ and p <r < g implies r = p.

pit1), 1 <i<m

Lemma 3.9. Ifp, ¢ € TI(n), q covers p if and only if the following conditions hold:

(i) p<gq,
(1) p € mmy,imes (0), 0<m < 2n—1, (Mm1,...,Mmpq1) € Ny
(#1) q € Wpt1,ma,.omp 1 +1(0) 07 @ € Uingtma . meys,1(n), 0 <m < 2n — 1,
(ml, ey My + 1) S Nm,+1 and (ml, ey M1, 1) S Nm—i—l-
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In the following theorem we denote ag = 0.

Theorem 3.10. Let f, h € F(n). Then ¢¥(h) = py covers ¥(f) = ps if and only

Zf f € mem17“~gm'r'+1 (n); h e Fm+1,m17~~,mrr~+1+1(n) or h € Fm+11m17“~1m7'+171(n)’
0<m<2n-—1, (my,...,mp31) € Nu, and for g € G the following conditions
hold:

(1) f(g) = as if and only if h(g) = az, 0 < i < m.
(II) f(g) =1 if and only if h(g) = 1 or h(g) = am+1-
Proof Suppose that p; covers ps. The first part of the theorem is an immediate

consequence of Lemma 3.9.
Since in II(n), p1 < -+ < pm < ps < P, we have

f(x) = h(z) = 0 if and only if = ¢ [p1),
f(x) =h(z) =a;, 1 <i<mifand only if x € [p;) \ [pit1), 1 <i<m,
f(x) = h(z) = 1 if and only if = € [p),
f(z) =1 and h(z) = a1 if and only if x € [py) \ [pn).
In particular, we have the conditions (I) and (I1).
Conversely, let f, h € F(n) be such that
IS Fm,m1,...,mr+1(n)a h e Fm+1,m1,...,mr+1+1(n) U Fm+1,m1,---,mr+1,1(n)a
and satisfying (I) and (IT). Then,

pr € Hmym17~~~1mr+1 (n) and pn € Hm+1,m1,m,mr+1+1(n) U Hm+1,m1,m,mr+1,1(n)'

From Lemma 3.9, we must prove that py < ps.
Consider in TI(n)

p1 < <Pm < Pm41 =Py
and
@1 < <gm < gm+1 < Gm+2 = Ph
the chains (py] and (ps] respectively and consider the following sets:

) N [pg),

[Gm+1) \ [gm+2)) N [Prm+1),

) \ [gi+1)) N ([pi) \ [pi1)), 1 <@ <m,

L(n) \ [¢1)) N (L(n) \ [p1)) = L(n) \ ([q1) U [p1))-

m+2

=[p
= (
(
(

Then
2 € Cpyg if and only if h(z) =1 and f(z) =1
2 € Cpy1 if and only if h(2) = apmyq and f(2) =1,
z € C; if and only if h(z) = a; and f(z) = a;,0 <i < m.

We have that Cy,42 is a filter, Cy is an ideal and Cj, 0 < ¢ < m, are nonempty
sets, being that a; € h(L(n)), a; € f(L(n)), 0 <i < m. Cpyq is also nonempty.
Indeed, if b € Frg1,my,..om,a+1(n), since  f € Foy i m,,, (n), there is g € G
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such that f(g) # h(g), then from (I) and (IT), h(g) = ams+1 and f(g) = 1, that is
9 € Cpg1. fh € Frp1m,,...omyq,1(n), there is g € G such that V f(g) # Vh(g),
then from (1) and (I1), h(Vg) = ams1 and f(Vg) = 1, that is Vg € Cpp1.

It is clear that the sets C;, 0 < i < m + 2, are pairwise disjoint. Observe that
Crt2 U Cmt1 = [@mt1) N [Pm—+1), and so it is a filter. Using these remarks it is a
routine matter to show that the set S = U520, is a subalgebra of L(n).

Let us see that G C S. If g € G, h(g) € {0,a1,...,am,@m+1,1}.

If h(g) = 1, g € [¢gm+2) and from (IT), f(g) = 1, that is, g € [pm+1). Then
g € CerQ - S.

I 2(g) = ami1s 9 € [ms1)\ [gms2) and from (11), f(g) = 1, that is g € [pms1).
Soge Cpy1 CS.

If h(g) = ai, 0 < i < m, then g € [¢;) \ [gi+1) and from (I), f(g) = a;, that is,
9 € [pi) \ [pi+1). Then g € C; C S.

Therefore, G C S and consequently S = L(n).

Then we can write, [p) = [gm+2) " L(1) = [gm-2) 0 (UZ42C;) = UPE2([gm2) N
Ci) = [gm+2) N Cons = ldm2) 0 [pms1) = [on) O [py):

Since pp, # py , we have py < py,. [ |

The previous theorem allows us to construct the ordered set of join-irreducible
elements of the free algebra L(n). By virtue of Lemma 3.6, there exists a one-to-
one correspondence between the set of minimal elements of II(n) and the set of
functions f from G into {0, 1}. Since (p] is a chain, for every p € II(n), then (f] is
also a chain for f € F(n). So, the ordered-connected components of F(n) are [f),

where f is minimal, that is, the order-connected components of F(n) are the sets
[f), where f: G — {0,1}.

We have constructed the Q-Heyting space (II(n); E'). The free algebra L(n) € C
with a finite set of generators of cardinality n > 0, is the algebra obtained from

(II(n); E) considering the decreasing subsets of II(n) with the quantifier given by
VieU = {q € II(n) : ¢Ep for same p € U}, for each U decreasing set of II(n).

Example 3.11. In the next figure we give the free algebra (L(1); V) generated by
an element g, and the ordered set II(1) of its join-irreducible elements, with the
equivalence relation which determines the quantifier.

(L(1); V)
(I1(1); E)
Vg —

(Vg—g9)—g

Y%
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Where 1 = (0) € Fo}l(l), 2 = (1) € Fo}l(l), 3 = (al) € FLQ(].), 4 = (al) S
Fi1,1(1) and 5= (a1) € F12,1(1). We denote =g =g — 0.

In the rest of this section we investigate the poset II(n) in order to obtain a
recursive formula for the number of elements of II(n).

Let Kj(n) be the family of order-connected components [f), with f minimal,
such that [f~1(1)] = j,0 < j < n. Itis clear that | Ko(n)| = 1, and if Ko(n) = {K},
then |K| = 1. In general, |K;(n)| = (?)

For a given j, all the order-connected components in K;(n) have the same
number of elements. So if Kj(n) = {Kl,Kg,...,K(TL)} and N(n,j) = |K| for
K € Kj(n), then

We are going to determine N (n, j).

Consider K = [f) € K;(n). From Theorem 3.10, we know that h € [f) covers f
if and only if h € F1 2(n) or h € F111(n) and
(I) h(g) =0 if and only if f(g) = 0.
(IT) h(g) € {a1,1} if and only if f(g) = 1.
In particular, there are ({) 4+ 4 (;) = 27 — 1 funtions h in Fy 2(n) covering
f, and similarly there are 27 — 1 funtions h in Fy 1,1(n) covering f. So, there are

2(27 — 1) functions h covering f, 2(1) of which satisfy |h= (a1)| =t, 1 <t < 5.

In these conditions we have the following result.

Proposition 3.12. (1) If h € F11.1(n), there exists f1 € Fo1(n) with [f1) €
K;_+(n) such that [h) and [f1) are order-isomorphic.
(2) If h € F12(n) and hy covers h, with hy € Faz1(n) and hi(g) = h(g),
for every g € G, then there exists fi € Fo1(n), [fi) € K;—+(n) such that
[W)\ [h1), [h1) and [f1) are order-isomorphic.

Proof
(1) If f1 : G — {0, 1} is the function defined by:
1 if h(g)=1
(+) filg) = { 0 if h(gg =a; or h(g)=0 "
f1 is clearly a minimal element of F(n), f1 € Fo1(n) and [f1) € K;_i(n).
Let us see that [h) and [f1) are order-isomorphic. Observe that if u € [h),
then w € Fiyi1mo,....m., (1), Where 0 <4 <2(j—t)and 1 <r < j—t+1.
We define « : [h) — [f1) by means of a(u) = v, where
0 it u(g)=0
(k) v(g) =9 1 if u(g)=1 U E Fimsmppr ().
ap—1 if u(g)=ar 1<k<1+1
Clearly « is an isomorphism.
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(2) Observe that, if w € [h) \ [h1), u # h, then v € Fiyim,...m,,(n), 1 <
i <2(j—-t),m >2and 0 <r < j—t If fi is the function defined
by (%), then [h) \ [h1) and [f1) are order-isomorphic. Indeed, if we define
a : [h)\ [h1) — [f1) by means of a(u) = v, where u € [h) \ [h1) and v
defined as in (%), v € Fy 1, —1,....m,, (n) and it can be proved that o is an
isomorphism.

Finally, consider § : [h1) — [f1) defined by f(u) = v, where u € [hy),
uwEFori2my.m i (n),0<i<2(j—1t),1<r<j—t+1and

0 it u(g)=0oru(g)=a;
U(g) = 1 if U(g) =1 , UV E Fi,ﬂ’LQ,---,TI’Lr+1(n)'
ap—o if ulg)=ar, 2<k<i+2

Clearly [ is an isomorphism.

From the previous proposition,

Therefore . o |
izole = (?) Lz: {3(1)]\1(7@,] —t)} +1],
and then |
IF(n)| = |II(n)| = 1 + é@) L}i} {3<‘Z>N(n,j—t)} +1
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