SciELO - Scientific Electronic Library Online

 
vol.25 número1Reptiles del área natural protegida Auca Mahuida, ArgentinaOcurrencia de algunas especies de chinches (Hemiptera: Pentatomidae) asociadas a los arrozales en Argentina índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

Compartir


Revista del Museo Argentino de Ciencias Naturales

versión On-line ISSN 1853-0400

Rev. Mus. Argent. Cienc. Nat. vol.25 no.1 Ciudad Autónoma de Buenos Aires jun. 2023

http://dx.doi.org/10.22179/revmacn.25.720 

ECOLOGÍA

Baseline metals concentration in the sea star Anasterias minuta in San Matías Gulf, Atlantic Ocean

Concentración de metales de referencia en la estrella de mar Anasterias minuta en el Golfo San Matías, Océano Atlántico

Lorena P. Arribas1  2  * 

Federico Márquez1  2 

Martín I. Brogger1 

Gregorio Bigatti1  2  3 

1 LARBIM, Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Bvd. Brown 2915, U9120ACV, Puerto Madryn, Argentina.

2 Universidad Nacional de la Patagonia “San Juan Bosco”-Sede Puerto Madryn, Bvd. Brown 3051, U9120ACV, Puerto Madryn, Argentina.

3 Universidad Espíritu Santo, Av. Samborondón Km. 2.5, Samborondón, 092301, Ecuador.

Abstract

Environments contaminated with metals can induce accumulation of trace metals in soft tissues of marine fauna resulting in negative effects. The oral brooding sea star Anasterias minuta is one of the most con spicuous macro-invertebrate top-predator species in the Atlantic Patagonian rocky shores that could accumulate trace elements and be used as biomonitor of coastal metal pollution. The aim of this study was to quantify metals concentrations on gonads of A. minuta populations in an anthropogenic impacted and in a natural protected area. Sea stars A. minuta were collected from two rocky intertidal populations in San Matías Gulf, near an iron-ore loading wharf at Punta Colorada (PC), and in the Natural Protected Area Puerto Lobos (PL), located 35 km south to PC. The essential metals Fe, Mn, Zn, Cu, Cr and Ni, and the non-essential metal Cd and As were present in gonads of A. minuta from both populations. However, the essential metal Co and the non-essential metal Pb were only detected in the Natural Protected Area PL, with values below to quantification limit at PC. As high metal concentrations can impact negatively on sea star populations and shore habitats, this metal survey obtained from gonads of A. minuta populations could be useful as a reference to start a monitoring program in urbanized and marine protected areas.

Keywords: Metals concentration; Asteroidea; Atlantic Patagonia; Anthropogenic impact

Resumen

Los ambientes contaminados con metales pueden inducir a la acumu lación de metales trazas en los tejidos blandos de la fauna marina, resultando en efectos negativos. La estrella de mar incubadora Anasterias minuta es una de las especies de depredadores superiores de macroinvertebrados más conspicuas en las costas rocosas de la Patagonia Atlántica que podría acumular elementos traza y usarse como biomonitor de la contaminación costera por metales. El objetivo de este estudio exploratorio fue cuantificar las concentraciones de metales en las gónadas de poblaciones de A. minuta en un área con impacto antrópico y en un Área Natural Protegida. Las estrellas de mar A. minuta fueron recolectadas de dos poblaciones intermareales rocosas del Golfo San Matías, cerca de un muelle de carga de mineral de hierro en Punta Colorada (PC), y en el Área Natural Protegida Puerto Lobos (PL), ubicada 35 km al sur de PC. Los metales esenciales Fe, Mn, Zn, Cu, Cr y Ni, y los metales no esenciales Cd y As estuvieron presentes en las gónadas de ambas poblaciones de A. minuta. Sin embargo, el metal esencial Co y el metal no esencial Pb fueron solo detectados en el Área Natural Protegida PL, con valores inferiores al límite de cuantificación en PC. Dado que las altas concentraciones de metales pueden tener un impacto negativo en las poblaciones de estrellas de mar y los hábitats costeros, estos datos de metales obtenidos de las gónadas de las poblaciones de A. minuta podrían ser útiles como referencia para comenzar un programa de monitoreo en áreas urbanizadas y marinas protegidas.

Palabras claves: Concentración de metales; Asteroidea; Patagonia Atlántica; Impacto antropogénico

INTRODUCTION

Metals are natural components of the envi ronment, frequently present as trace elements of continental rocks, water column, in soil, or available through food chains (Elberling et al., 2003). Some metals are essential elements in liv ing organisms, acting as cofactors for many en zymes and for stabilizing structures of proteins. Nevertheless, metal concentrations and their potential toxic effects may be anthropogenically enriched, mainly if industrial and urban wastes are discharged directly on the seabed (Loring & Asmund, 1989; Amin, 1995; Elberling et al., 2003; Prashanth et al., 2015). Metal mining ac tivities generate serious environmental prob lems due to the generally low solubility of con taminants in sea water and their accumulation, mainly in sediments with negative effects over benthic organisms living there (Elberling et al., 2003; Danis et al., 2004; Benedicto et al., 2008). Increased non-essential metals concentrations seem to reduce reproduction, behavior (Furness & Rainbow, 1990; Rhora, 2005), and have effects in skeletal morphogenesis (Temara et al., 1997) in some marine species. Consequently, marine fauna accumulate trace metals in soft body tis sues reaching higher concentrations than en vironmental levels (De Moreno et al., 1997; Vázquez et al., 2007; Idaszkin et al., 2017), while toxicity could occur when the rate of metal up take exceeds the combined rates of detoxification and excretion (Rainbow, 2007). Coastal species are more vulnerable to anthropogenic distur bances than those from offshore (Thompson et al., 2002). This is because intertidal ecosystems are more prone to direct interaction with physi cal and chemical alterations of the habitat, such as city waste discharges.

Sea stars are widely distributed around the world with ca. 1900 species grouped into 36 families (Pawson, 2007; Mah & Blake, 2012). Sea stars occupy meaningful ecological roles, such as the North Pacific Pisaster, whose influence in the structure of benthic communities on rocky shores is well known (Paine et al., 1985; Mah & Blake, 2012). In the last two decades, sea stars have been used as bioindicators in the evaluation of anthropogenic waste fluxes, such as heavy met als (Temara et al., 1998; Den Besten et al., 2001; Danis et al., 2004, 2006). High contaminant lev els by industries emissions, such as persistent or ganic pollutants, nutrients, oils and heavy metals (Islam & Tanaka, 2004), can lead to DNA damage, abnormal embryonic development, reproductive inhibition, and impaired offspring quality (Den Besten et al., 1989; Trieff et al., 1995; Au et al., 2001a, b; Yang & Xiong, 2015), which can, in turn, affect sea stars populations (Temara et al., 1998; Danis et al., 2006). Abnormalities in sea stars populations, such as deviations from pentamer ism, suggest environmental perturbations on the metamorphosis of larvae or abnormal regenera tion of arms (Hotchkiss, 2000; Kolandhasamy & Subramanian, 2012; Maheswaran et al., 2015; Arribas et al., 2017).

The oral brooding sea star Anasterias minu ta Perrier, 1875 is one of the most conspicuous macro-invertebrate top-predator species in the Atlantic Patagonian rocky shores, which preys upon a wide range of organisms (Gil & Zaixso, 2008; Brogger et al., 2013; Arribas et al., 2017). In the last fifty years, Patagonian coasts suf fered an increase in anthropogenic population, tourism, industries, and maritime traffic (Yorio et al., 2001; Commendatore & Esteves, 2007; Chomnalez, 2011; Márquez et al., 2017; Primost et al., 2017). Playas Doradas is a recreational area in Río Negro Province (Atlantic Patagonia, Argentina) located in the San Matías Gulf. The area has a mineral port, located south to the town, which used to distribute iron by ships and throw away metal wastes, as iron pellets to the marine environment (pers. obs.). Although the iron mine “Hierro Patagónico Rionegrino S.A.” (HIPARSA) is inactive since November 2016, an open-pit iron ore deposit of ca. 5 thousand tons remains near the pier of Punta Colorada (Zanettini, 2008). Therefore, the volatility of the continental dust (Paparazzo et al., 2018), such as iron deposit, added to the strong winds in the area (Genchi, 2012) could affect coast populations and ecosystem, representing a serious risk to the flo ra and fauna (Gurzau et al., 2003). Puerto Lobos was declared Natural Protected Area in 1998. It used to be an old wool jetty now used as touris tic and recreational activities related to whale, bird and sea lion watching, and artisanal fishing (Zanettini, 2008; Morsán & Ciocco, 2011).

The aim of this exploratory study was to de termine for the first time the essential and non-essential metals concentrations in gonads of the rocky intertidal sea star A. minuta from two pop ulations of different anthropogenic impact, near the iron-ore loading wharf Punta Colorada (PC) and in the Natural Protected Area Puerto Lobos (PL), located 35 km south to PC.

MATERIAL AND METHODS

Study site and sampling populations

The survey was conducted in two rocky inter tidal shores ca. 35 km separated from each other in the south of the San Matías Gulf, Atlantic Patagonia: Punta Colorada (41°42’ S - 65°1’ W, hereafter PC, Fig. 1A) near Playas Doradas town, and the Natural Protected Area Puerto Lobos (41°57’ S - 65°4’ W, hereafter PL; Fig. 1B). Both rocky outcrops belong to a group of volca nic and marine sediments with large pyroclastic contribution (Kokot et al., 2004). At PC shore, there is a 1,000 meters length ore wharf that was used to distribute iron from Sierra Grande Mine (MCC S.A.) to the dock (Zanettini, 2008), where a 1,500 meters conveyor belt can load ships with a maximum of 2,000 tons per hour. This pier was active until a few months before our survey.

Fig. 1 Sampling sites (A) Punta Colorada iron-ore loading wharf (PC) and (B) the Natural Protected Area Puerto Lobos (PL) on the SW Atlantic coast (Argentina). 

Sea stars of similar size were collected from low intertidal level at PC (ca. 400 m south of pier, n = 21) and PL (ca. 35 km south of pier, n = 18) in the austral summer of 2017, when gonads reach maturity in both sexes before the brooding season (Gil et al., 2011; Pérez et al., 2015). Sea stars size (as the longest arm length R) was measured with Vernier calipers (± 0.01 mm) and weighted to calculate wet biomass (± 0.1, g m−2). Individuals were stored in refrigerated plastic containers and transported to the laboratory. Metals concentra tions were measured in Anasterias minuta dry gonads at both localities. Gonads of A. minuta were dissected and lyophilized to be digested in a Novawave microwave Digestor to quantify metal levels (μg g-1 ± SD). The measurements were made on an inductively coupled plasma optical emission spectrometer (ICP-OES) Agilent 720 (Marinho et al., 2018). To achieve the minimum recommended sample in the microwave digestor (dry weight ca. 0.5 g), a random pooled of among two and four individuals were carried out (eight and six replicates were analyzed at PC and PL, respectively).

RESULTS

Sea stars mean R size (± SD) and wet bio mass (± SD) from the population at PC was 26.1 ± 3.1 mm and 5.7 ± 1.4 g, respectively. At PL, sea stars population presented a mean R size of 24.8 ± 1.9 mm and a wet biomass of 5.3 ± 1.4 g. Sea stars collected did not show significant differences between R sizes (t-test, t= 1.89, p = 0.065) or wet biomass (t-test t = 0.76, p = 0.45) between populations at both localities.

Similar metals were found in gonads of popu lations of the sea star Anasterias minuta at both localities (Table 1). However, the essential metal Co and the non-essential metal Pb were only de tected in the gonads of the A. minuta population of the Natural Protected Area PL, and were below to the quantification limit in all gonads sampled at the iron-ore loading wharf PC. Otherwise, the essential metals Fe, Mn, Zn, Cu, Cr and Ni, and the non-essential metal Cd and As were present in gonads of both sea star populations (Table 1).

Table 1 Metal concentrations (μg g-1 ± SD) in gonads of the sea star Anasterias minuta from two populations, the pier area Punta Colorada (PC, n = 21) and the marine natural protected area Puerto Lobos (PL, n = 18). NA not available, ND below the quantification limit. * Value detected in only one simple 

DISCUSSION

In our study, essential and non-essential met als were quantified in gonads of both sea star populations separated ca. 35 km away from each other. While similar metal types were found in gonads of the brooding sea star Anasterias minu ta in both populations, some metals as Co and Pb were only detected in the Natural Protected Area PL, being under the quantification limit in the iron-ore loading wharf PC. Previous studies have shown similar metal compositions with variable values of essential and non-essential metals in tissues of sea stars and their effects over echino derm populations (Den Besten et al., 1989, 2001; Flammang et al., 1997; Temara et al., 1997, 1998, 2002; Danis et al., 2004, 2006). Negative effects derived from high metal concentrations have been found in marine populations at contami nated areas, such as decrease in abundance and biomass (Menge et al., 2016), retarded embryo development (Trieff et al., 1995; Kobayashi & Okamura, 2004, 2005), and effects in DNA and enzymatic processes (Jakimska et al., 2011a). Experimental studies in the sea star Asterias rubens have shown that exposures to high con centrations of essential metals reduced righting time (Sköld et al., 2015), increased numbers of coelomocytes and proliferation of epithelial cells (Oweson et al., 2010), while increased levels of HSC70 in immune cells (Matranga et al., 2012). On the other hand, the increase of non-essential metal concentrations seem to reduce reproduc tion, behavior (Furness & Rainbow, 1990; Rhora, 2005), and have effects in skeletal morphogenesis (Temara et al., 1997) in some marine species. For example, skeletal material stiffness and tough ness of Asterina rubens decreased in Pb contami nated areas (Temara et al., 1997; Moureaux et al., 2011). Arribas et al. (2017) registered sea stars with abnormal characteristics at the PC locality, whereby deeper experimental and field studies in A. minuta are necessary to elucidate the effect of differentially increased environmental met als alongshore in sea star populations using the baseline data obtained at this work, as well as the potential use of this species as bioindicator of contamination.

Mollusks, crustaceans, and echinoderms can act as bioindicators to evaluate the availability of environmental metals. The accumulation degree in tissues depends on the properties of the species, the environmental conditions, and the level in the trophic position (Temara et al., 2002; Jakimska et al., 2011b). The accumulation of metals in the animal body is highly dependent on diet, where animals at the top of the trophic pyramid present higher metal levels in their tissues (Jakimska et al., 2011b). For example, ecotoxicologists often use mussels as bioindicator, although they do not always indicate the relationship between tissue and environmental conditions, as is the case of the asteroid Asterias rubens in Norway (Temara et al., 2002). In species such as A. minuta, which preys upon a wide range of species and the main preys depend on the environmental availability (Gil & Zaixso, 2008; Arribas et al., 2017), future research on metals accumulation should con template concentrations focus on several spe cies from the trophic chains, as recommended by Temara et al. (2002) and Jakimska et al. (2011b), and assess the availability of the metals in the environment where individuals develop (seawa ter and benthos).

Although environmental data is not available and only gonads were analyzed in the present work, this baseline information of metals in A. minuta from two localities (an anthropically im pact area and a Natural Protected Area) showed the importance of metals quantification and monitoring of different populations alongshore in a generalist or opportunistic predator species, such as A. minuta. In populations that present a brood protection reproductive strategy with low dispersal ability, as A. minuta (Salvat, 1985; Gil et al., 2011), marine contamination such as un controlled industries waste (Pearse et al., 2009) can generate aberrations during the embryonic and larval development (Den Besten et al., 1989; Trieff et al., 1995; Kobayashi & Okamura, 2004, 2005; Glynn & Colley, 2008; Pearse et al., 2009) leading to a decrease in local sea star populations, and a cascade effect in the benthic communities. More studies may strengthen the biological im plications of metal contamination on A. minuta and their ecological impact on rocky intertidal assemblages in Atlantic Patagonia.

CONCLUSIONS

Even though sea stars could be used as biomonitors of early warning signals of met al pollution and the quality of coastal waters (Temara et al., 1998, 2002), an exhaustive eco logical impact and monitoring program should be implemented in the urbanized and natural ar eas of Patagonian coasts to evaluate the health of marine organisms and their populations, which provide ecosystem services. In addition, it should be evaluated other A. minuta organs, such as pyloric caeca (detoxified storage) or the whole sea star, as well as the anatomy of the brooders, seawater and local sediments to explore relation ships between concentration detect in the biota and those in the environment.

ACKNOWLEDGEMENTS

We thank Sofia Quiroga for housing during field trips, Juan Pablo Pisoni and Andrés Bilmes for their knowledge in oceanography and geol ogy of the study area, to Ministerio de Ambiente y Control del Desarrollo Sustentable de la pro vincia de Chubut and Secretaría de Ambiente y Desarrollo Sustentable de la provincia de Río Negro, as well as the foundations Foro para la Conservación del Mar Patagónico y Áreas de Influencia, and Fundación de Historia Natural Azara for their support. We are grateful to three anonymous reviewers and Editorial committee for helpful comments on an earlier version of this paper. This work was partly supported by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina) under PICT 0249 to LPA, PICT 0969 to GB, and PICT 2549 to MIB, PICT 3197 to FM and by UNPSJB (Universidad Nacional de la Patagonia San Juan Bosco) under PI 1507 to LPA.

REFERENCES

Amin, O.A. 1995. Toxicidad para invertebrados marinos de algunos metales pesados detectados en la zona costera próxima a Ushuaia, Tierra del Fuego. PhD thesis. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. [ Links ]

Arribas, L.P., M. Bagur, M.G. Palomo & G. Bigatti. 2017. Population biology of the sea star Anasterias minuta (Forcipulatida: Asteriidae) threatened by anthropogenic activities in rocky intertidal shores of San Matías Gulf, Patagonia, Argentina. Revista de Biología Tropical 65: 73-84. [ Links ]

Au, D.W.T., C.Y. Lee, K.L. Chan & R.S.S. Wu. 2001a. Reproductive impairment of sea urchins upon chronic exposure to cadmium. Part I: Effects on gamete quality. Environmental Pollution 111: 1-9. [ Links ]

Au, D.W.T., A.A. Reunov & R.S.S. Wu. 2001b. Reproductive impairment of sea urchin upon chronic exposure to cadmium. Part II: Effects on sperm development. Environmental Pollution 111: 11-20. [ Links ]

Benedicto, J., C. Martínez-Gómez, J. Guerrero, A. Jornet & C. Rodríguez. 2008. Metal contamina tion in Portman Bay (Murcia, SE Spain) 15 years after the cessation of mining activities. Ciencias Marinas 34: 389-398. [ Links ]

Brogger, M.I., D.G. Gil, T. Rubilar, M.I. Martínez, M.E. Díaz de Vivar, M. Escolar, L. Epherra, A.F. Pérez & A. Tablado. 2013. Echinoderms from Argentina: biodiversity, distribution and current state of knowledge. In: J.J. Alvarado & F.A. Solís-Marín (Ed.), Echinoderms Research and Diversity in Latin America, pp. 359-403, Springer-Verlag, Berlin. [ Links ]

Chomnalez, F. 2011. Evolución geomorfológica del área costera de Las Grutas, provincia de Río Negro (1969-2008). Párrafos geográficos 10: 116-146. [ Links ]

Commendatore, M.G. & J.L. Esteves. 2007. An as sessment of oil pollution in the coastal zone of Patagonia, Argentina. Environmental Management 40: 814-821. [ Links ]

Danis, B., P. Wantier, R. Flammang, S. Dutrieux, P. Dubois & M. Warnau. 2004. Contaminants levels in sediments and asteroids (Asterias rubens L, Echinodermata) from the Belgian coast and Scheldt estuary: polychlorinated biphenyls and heavy metals. Science of the Total Environment 333: 149-65. [ Links ]

Danis, B., P. Wantier, R. Flammang, P. Pernet, Y. Chambost-Manciet, G. Coteur, M. Warnau & P. Dubois. 2006. Bioaccumulation and effects of PCBs and heavy metals in sea stars (Asterias rubens, L.) from the North Sea: A small scale perspective. Science of the Total Environment 356: 275-289. [ Links ]

De Moreno, J.E.A., M. S. Gerpe, V.J. Moreno & C. Vodopivez. 1997. Heavy metals in Antarctic organ isms. Polar Biology 17: 131-140. [ Links ]

Den Besten, P.J., H.J. Herwig, D.I. Zandee & P.A. Voogt. 1989 reproduction of the sea star Asterias rubens: aberra tions in the early development. Ecotoxicology and Environmental Safety 18: 173-180. [ Links ]

Den Besten, P.J., S. Valk, E. van Weerlee, R.F. Nolting, J.F. Postma & J.M. Everaarts. 2001. Bioaccumulation and biomarkers in the sea star Asterias rubens (Echinodermata: Asteroidea): a North Sea field study. Marine Environmental Research 51: 365-87. [ Links ]

Elberling, B., K.L. Knudsen, P.H. Kristensen & G. Asmund. 2003. Applying foraminiferal stratigra phy as a biomarker for heavy metal contamination and mining impact in a fiord in West Greenland. Marine Environmental Research 55: 235-256. [ Links ]

Flammang, P., M. Warnau, A. Temara, D.J. Lane & M. Jangoux. 1997. Heavy metals in Diadema setosum (Echinodermata, Echinoidea) from Singapore coral reefs. Journal of Sea Research 38: 35-45. [ Links ]

Furness, R.W. & P.S. Rainbow. 1990. Heavy metals in the marine environment. 1st edition. CRC Press, Boca Raton, 262 pp. [ Links ]

Genchi, S.A. 2012. Geomorfología regional y dinámica costera del sector occidental del golfo San Matías. PhD thesis, Universidad Nacional del Sur. [ Links ]

Gil, D.G. & H.E. Zaixso. 2008. Feeding ecology of the subantarctic sea star Anasterias minuta within tide pools in Patagonia, Argentina. Revista de Biología Tropical 56: 311-328. [ Links ]

Gil, D.G., G. Escudero & H.E. Zaixso. 2011. Brooding and development of Anasterias minuta (Asteroidea: Forcipulata) in Patagonia, Argentina. Marine Biology 158: 2589-2602. [ Links ]

Glynn, P.W & S.B. Colley. 2008. Survival of brooding and broadcasting reef corals following large scale disturbances: is there any hope for broadcasting species during global warming. In: Proceedings of 11 th international coral reef symposium, pp. 1-5, Ft. Lauderdale. [ Links ]

Gurzau, E.S., C. Neagu & A.E. Gurzau. 2003. Essential metals-case study on iron. Ecotoxicology and Environmental Safety 56: 190-200. [ Links ]

Hotchkiss, F.H. 2000. Inferring the developmental ba sis of the sea star abnormality “double ambulacral groove” (Echinodermata: Asteroidea). Revista Chilena de Historia Natural Santiago 73: 579-483. [ Links ]

Idaszkin, Y.L., M.P. Alvarez & E. Carol. 2017. Geochemical processes controlling Geochemical processes controlling the distribution and con centration of metals in soils from a Patagonian (Argentina) salt marsh affected by mining resi dues. Science of the Total Environment 596-597: 230-235. [ Links ]

Islam, M.S. & M. Tanaka. 2004. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for manage ment: a review and synthesis. Marine Pollution Bulletin 48: 624-649. [ Links ]

Jakimska, A., P. Konieczka, K. Skóra & J. Namieśnik. 2011. Bioaccumulation of metals in tissues of marine animals, Part I: the role and impact of heavy metals on organisms. Polish Journal of Environmental Studies 20: 1117-1125. [ Links ]

Jakimska, A., P. Konieczka, K. Skóra & J. Namieśnik. 2011. Bioaccumulation of metals in tissues of marine animals, Part II: metal concentrations in animal tissues. Polish Journal of Environmental Studies 20 (5): 1127-1146. [ Links ]

Kobayashi, N. & H. Okamura. 2004. Effects of heavy metals on sea urchin embryo development. 1. Tracing the cause by the effects. Chemosphere 55: 1403-1412. [ Links ]

Kobayashi, N. & H. Okamura. 2005. Effects of heavy metals on sea urchin embryo development. Part 2. Interactive toxic effects of heavy metals in synthet ic mine effluents. Chemosphere 61: 1198-1203. [ Links ]

Kokot, R.R., J.O. Codignotto & M. Elissondo. 2004. Vulnerabilidad al ascenso del nivel del mar en la costa de la provincia de Río Negro. Revista de la Asociación Geológica Argentina 59: 477-487. [ Links ]

Kolandhasamy, P. & B. Subramanian. 2012. Occurrence of abnormal starfish Astropecten indicus (Doderlein, 1888) (Echinodermata: Astroidea) along Southeast coast of India. Biotemas 25: 293-296. [ Links ]

Loring, D.H. & G. Asmund. 1989. Heavy metal con tamination of a Greenland fjord system by mine wastes. Environmental Geology and Water Sciences 14: 61-71. [ Links ]

Mah, C.L. & D.B. Blake. 2012. Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS ONE 7: e35644. [ Links ]

Maheswaran, M.L., R. Narendran, M. Yosuva & B. Gunalan. 2015. Occurrence of abnormal starfish from Olaikuda in Rameswaram Islands, South East Coast of India. International Journal of Fisheries and Aquatic Studies 3: 415-418. [ Links ]

Marinho, C.H., E. Giarratano & M.N. Gil. 2018. Metal biomonitoring in a Patagonian salt marsh. Environmental Monitoring and Assessment 190: 598. [ Links ]

Márquez, F., M.A. Primost & G. Bigatti. 2017. Shell shape as a biomarker of marine pollution historic increase. Marine Pollution Bulletin 114: 816-820. [ Links ]

Matranga, V., A. Pinsino, D. Randazzo, A. Giallongo & P. Dubois . 2012. exposure to metals (Cu, Cd, Pb, Zn) activates the im mune cell stress response in the common European sea star (Asterias rubens). Marine Environmental Research 76: 122-127. [ Links ]

Morsán, E. & N.F. Ciocco. 2011. Razor clam fishing in Patagonia, Argentina. In: A. Guerra Díaz, C. Lodeiros Seijo, M.B. Gaspar & F. da Costa González (Ed.), Razor clams: biology, aquaculture and fishe ries, Xunta de Galicia, pp 405-416. [ Links ]

Moureaux, C., J. Simon, G. Mannaerts, A.I. Catarino, P. Pernet & P. Dubois. 2011. Effects of field contamination by metals (Cd, Cu, Pb, Zn) on biometry and mechanics of echinoderm ossicles. Aquatic Toxicology 105: 698-707. [ Links ]

Oweson, C., C. Li, I. Söderhäll & B. Hernroth. 2010. Effects of manganese and hypoxia on coelomocyte renewal in the echinoderm, Asterias rubens (L.). Aquatic Toxicology 100: 84-90. [ Links ]

Paine, R.T., J.C. Castillo & J. Cancino. 1985. Perturbation and recovery patterns of starfish-dominated intertidal assemblages in Chile, New Zealand, and Washington State. The American Naturalist 125: 679-691. [ Links ]

Paparazzo, F.E., A.C. Crespi-Abril, R.J. Gonçalves, E.S. Barbieri, L.L.G. Villalobos, M.E. Solís & G. Soria. 2018. Patagonian dust as a source of macronutrients in the Southwest Atlantic Ocean. Oceanography 31: 33-39. [ Links ]

Pawson, D.L. 2007. Phylum Echinodermata. Zootaxa 1668: 749-764. [ Links ]

Pearse, J.S., R. Mooi, S.J. Lockhart & A. Brandt. 2009. Brooding and species diversity in the Southern Ocean: selection for brooders or speciation with in brooding clades?. In: I. Krupnik, M. Lang & S.E. Miller (Ed.), Smithsonian at the Poles: Contributions to International Polar Year Science, pp. 181-196. [ Links ]

Pérez, A.F., C.C. Boy, J. Calcagno & G. Malanga. 2015. Reproduction and oxidative metabolism in the brooding sea star Anasterias antarctica (Lütken, 1957). Journal of Experimental Marine Biology and Ecology 463: 150-157. [ Links ]

Prashanth, L., K.K. Kattapagari, R.T. Chitturi, V.R. Baddam & L.K. Prasad. 2015. A review on role of essential trace elements in health and disease. Journal of Dr. NTR University of Health Sciences 4: 75-85. [ Links ]

Primost, M.A., M.N. Gil & G. Bigatti. 2017. High bio accumulation of cadmium and other metals in Patagonian edible gastropods. Marine Biology Research 13: 774-781. [ Links ]

Rainbow, P.S. 2007. Trace metal bioaccumulation: mod els, metabolic availability and toxicity. Environment International 33: 576-582. [ Links ]

Rhora, J. 2005. Effect of chromium VI on the pro duction and behavior of Lytechinus variegatus (Echinodermata: Echiniodea). PhD thesis. College of Arts and Sciences, University of South Florida. [ Links ]

Salvat, M.B. 1985. Biología de la reproducción de Anasterias minuta Perrier (Echinodermata, Asteroidea), especie incubadora de las costas pata gónicas. PhD thesis. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. [ Links ]

Sköld, H.N., S.P. Baden, J. Looström, S.P. Eriksson & B.E. Hernroth. 2015. follow ing manganese exposure in asteroid echinoderms. Aquatic Toxicology 167: 31-37. [ Links ]

Temara, A., M. Warnau, M. Jangoux & P. Dubois. 1997. Factors influencing the concentrations of heavy metals in the asteroid Asterias rubens L. (Echinodermata). Science of the Total Environment 203: 51-63. [ Links ]

Temara, A., J.M. Skei, D. Gillan, M. Warnau, M. Jangoux & P. Dubois. 1998. Validation of the aster oid Asterias rubens (Echinodermata) as a bioindica tor of spatial and temporal trends of Pb, Cd, and Zn contamination in the field. Marine Environmental Research 45: 341-356. [ Links ]

Temara, A., M. Warnau & P. Dubois. 2002. Heavy met als in the sea star Asterias rubens (Echinodermata): basis for the construction of an efficient biomonitoring program. J.M. Fernandez & R. Fichez (Eds.), Environmental Changes and Radioactive Tracers, IRD Editions, Paris, pp. 71-91. [ Links ]

Thompson, R.C., T.P. Crowe & S.J. Hawkins. 2002. Rocky intertidal communities: past environmen tal changes, present status and predictions for the next 25 years. Environmental Conservation 29: 168-191. [ Links ]

Trieff, N.M., L.A. Romaña, A. Esposito, R. Oral, F. Quiniou, M. Iaccarino, N. Alcock, V.M.S. Ramanujam & G. Pagano. 1995. Effluent from bauxite factory induces developmental and reproductive dam age in sea urchins. Archives of Environmental Contamination and Toxicology 28: 173-177. [ Links ]

Vázquez, N.N., M.A. Gil, J.L. Esteves & M.A. Narvarte. 2007. Monitoring heavy metal pollution in San Antonio Bay, Río Negro, Argentina. Bulletin of Environmental Contamination and Toxicology 79: 121-125. [ Links ]

Yang, B. & D. Xiong. 2015. Bioaccumulation and sub acute toxicity of mechanically and chemically dis persed heavy fuel oil in sea urchin (Glyptocidaris crenulari). Scientia Marina 79: 497-504. [ Links ]

Yorio, P., E. Frere, P. Gandini & A. Schiavini. 2001. Tourism and recreation at seabird breeding sites in Patagonia, Argentina: current concerns and future prospects. Bird Conservation International 11: 231-245. [ Links ]

Zanettini, J.C.M. 2008. Sierra Grande: La mina de hierro subterránea más grande de Latinoamérica. In: CSIGA (Ed.) Sitios de Interés Geológico de la República Argentina. Anales 46: 659-668. [ Links ]

Received: May 26, 2022; Accepted: March 09, 2023

* Corresponding author: Lorena P. Arribas, lorearribas@gmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License