SciELO - Scientific Electronic Library Online

 
vol.25 issue1Identification of seedlings and young plants of Schinus fasciculata and S. bumelioides (Anacardiaceae) in Guachipas, SaltaResponse in the production wax of Bulnesia retama (Zygophyllaceae) to different pruning intensities in the desert del Monte, Argentina author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

Share


Revista del Museo Argentino de Ciencias Naturales

On-line version ISSN 1853-0400

Rev. Mus. Argent. Cienc. Nat. vol.25 no.1 Ciudad Autónoma de Buenos Aires June 2023

http://dx.doi.org/10.22179/revmacn.25.797 

PALEONTOLOGÍA

The first record of Purussaurus (Crocodylia, Alligatoridae) in the Late Miocene of Argentina

Primer registro de Purussaurus (Crocodylia, Alligatoridae) en el Mioceno Tardío de Argentina

Paula Bona1  2  * 

Diego Pol3  2  * 

Leandro M. Pérez4  2  * 

David E. Tineo5  2  * 

Diego Brandoni6  2  * 

Jorge I. Noriega6  2  * 

1 División Paleontología Vertebrados, Museo de La Plata - Anexo II, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calles 122 y 60, B1900FWA, La Plata, Buenos Aires, Argentina.

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina.

3 Museo Paleontológico Egidio Feruglio, Avenida Fontana 140, CP 9100, Trelew, Chubut, Argentina.

4 División Paleozoología Invertebrados, Museo de La Plata - Anexo I, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calles 122 y 60, B1900FWA, La Plata, Buenos Aires, Argentina.

5 Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. Calles 60 y 122, B1900FWA, La Plata, Buenos Aires, Argentina.

6 Laboratorio de Paleontología de Vertebrados, Centro de Investigación Científica y de Transferencia Tecnológica a la Producción - CONICET, España 149, E3105BWA Diamante, Entre Ríos, Argentina.

ABSTRACT

Herein we report the first record of Purussaurus Barbosa-Rodrigues, 1892 for the Neogene of Argentina. This genus is recorded in Miocene beds of different localities in Colombia, Venezuela, Brazil, and Perú, and includes at least three different species with total body lengths ranging from 8 to 13 m. The mate rial reported here is a partially preserved tooth (MAS-PV 386) found at the locality Toma Vieja (Paraná, Entre Ríos Province, Argentina), in strata informally known as “Conglomerado osífero” or “Mesopotamiense” (Late Miocene) and traditionally regarded as the basal levels of the Ituzaingó Formation. The material corresponds to the apical portion of a conical crown, slightly compressed, lingually curved, and with a subrounded apex. The enamel is ornamented with thin apicobasal ridges that are anastomosed and separated by shallow grooves. These ridges are transversely crossed by shallow lines that give the enamel surface a crackled aspect. The crown has a continuous carina formed by the enamel that runs along the mesial and distal surface of the tooth, which divides the vestibular (or labial side of the tooth) and lingual faces of the crown that are subequal in size. The carina is ornamented with fine enamel wrinkles that are parallel to each other and perpendicular to the mesiodistal carina. This condition, known as pseudoziphodonty, together with the enamel structure and overall shape of the crown, allow referring the specimen MAS-PV 386 to Purussaurus sp. This finding represents the southernmost record of one of the largest predatorial neosuchian crocodylians which inhabited the wetlands that developed during the Late Miocene in South America.

Keywords: Crocodyliformes; Neogene; South American Wetlands; “Conglomerado osífero”; Entre Ríos

RESUMEN

Damos a conocer aquí el primer registro de Purussaurus Barbosa-Rodrigues, 1892 para el Neógeno de Argentina. Este género está representado en el Mioceno en distintas localidades de Colombia, Venezuela, Brasil, y Perú, por al menos tres especies con tamaños corporales estimados de 8m a 13m de largo total. El ma terial es un diente fragmentario (MAS-PV 386) procedente de estratos aflorantes en la localidad de Toma Vieja (Paraná, provincia de Entre Ríos), conocidos informalmente como “Conglomerado osífero” o “Mesopotamiense” (Mioceno Tardío) y tradicionalmente considerados como niveles basales de la Formación Ituzaingó. Corresponde al sector apical de la corona de un diente cónico, levemente comprimido, curvado lingualmente, y subredondeado en el ápice. El esmalte se encuentra ornamentado por finas crestas apicobasales, anastomosadas y separadas por suaves surcos. Estas crestas están atravesadas perpendicularmente por líneas delgadas que observadas bajo lupa le dan al esmalte un aspecto craquelado. Presenta una carena continua formada por esmalte, extendida a lo alto de las caras mesial y distal del diente, que lo divide en dos sectores vestibular y lingual, subiguales. Dicha carena se encuentra ornamentada por finas crenulaciones muy marcadas, paralelas entre sí y perpendiculares a la carina mesiodistal. Esta condición denominada pseudozifodoncia, combinada con las características del esmalte y la forma general del diente, permite asignar a MAS-PV 386 a Purussaurus sp. Este hallazgo representa el registro más austral de uno de los depredadores de mayor tamaño de cocodrilos neosuquios conocidos, que habitó en los humedales que se desarrollaron en el Mioceno Tardío de América del Sur.

Palabras clave: Crocodyliformes; Neógeno; Humedales sudamericanos; “Conglomerado osífero”; Entre Ríos

INTRODUCTION

Wetlands concentrate a large part of the continental biodiversity and therefore play a fundamental role in macroevolutionary pro cesses (Greb et al., 2006). Today, South American land ecosystems associated with the Amazon, Paraguay, and the southernmost Paraná-del Plata fluvial systems are part of the largest wet lands of the world (Orfeo & Neiff, 2008). The early history of these ecosystems dates back to the early Neogene, when they developed in tec tonically controlled environments linked to the compressive Andean orogeny, which remodeled the foreland basin landscape (Wesselingh et al., 2001; Hoorn et al., 2010, 2022; Tineo, 2020; Tineo et al., 2021). South American Neogene wetlands and associated fluvial systems are mainly known from several Miocene geological outcroppings such as the exceptional depositional and fossil records of Pebas-Solimões formations (close to the Peruvian-Colombian-Brazilian borders), the Honda Group (La Venta, Colombia), the Urumaco Formation (Urumaco, Venezuela), the Yecua Formation (Argentinian-Bolivian Sub-Andean zone) and the “Conglomerado osífero” (Ituzaingó Formation, Entre Ríos Province, Argentina) (e.g., Langston, 1965; Cione et al., 2000; Wesselingh et al., 2001; Hoorn et al., 2010, 2022; Riff et al., 2010; Salas-Gismondi et al., 2015, 2016, 2018; Tineo, 2020; Tineo et al., 2021). These sedimen tary beds had been deposited in a temporal range that goes approximately from the Early Miocene (ca. 23 Ma) to the Late Miocene (ca. 10.5-7/5 Ma) (e.g., Uba et al., 2009; Hoorn et al., 2010, 2022), and are mostly composed of shallow aquatic set tings of varying salinity and marine influence, such as lakes, swamps, and rivers, that repre sent different sequences of inland mega wet lands (e.g., Early to Middle Miocene sections of the Peruvian Pebas Formation and Late Miocene Yecua Formation; Nutall, 1990; Wesselingh et al., 2001; Boonstra et al., 2015; Hoorn et al., 2022; Uba et al., 2009; Tineo, 2020; Tineo et al., 2021), and predominantly fluvial or delta plain depos its (e.g., the Late Miocene Urumaco, Tranquitas, and Ituzaingó formations; Tineo et al., 2022; Quiroz & Jaramillo, 2010; Hoorn et al., 2010; Brandoni et al., 2019).

All these Miocene deposits achieve astonish ing associations of continental fossil vertebrates. Among them, Miocene crocodyliform assemblag es are characterized by the presence of a great di versity of amphibian neosuchians, the Crocodylia, and the much less diverse and abundant ter restrial sebecosuchians, such as Langstonia huilensis Langston (1965) (= Sebecus huilen sis; Paolillo & Linares, 2007) from the Middle Miocene of La Venta, Colombia. Crocodylia is the best represented group, with a large diversity of gavialoids (e.g; Siquisiquesuchus venezuelensisBrochu & Rincón, 2004; Aktiogavialis caribesiSalas-Gismondi et al., 2018; Dadagavialis gunai Salas-Gismondi et al., 2018) and several species of Gryposuchus (Gürich, 1912) and alligatoroids (e.g., Gnatusuchus pebasensis Salas-Gismondi et al., 2015; Kuttanacaiman iquitosensis Salas-Gismondi et al., 2015; Globidentosuchus brachy rostrisScheyer et al., 2013; Centenariosuchus gilmoreiHastings et al., 2013; Culebrasuchus mesoamericanus Hastings et al., 2013; Acresuchus pachytemporalisSouza-Filho et al., 2018; PaleosuchusGray, 1862; several species of CaimanSpix, 1825, PurussaurusBarbosa-Rodrigues, 1892, and MourasuchusPrice, 1964). These crocodylians show a high range of mor phological disparity and body sizes indicative of the ecological diversity that this group achieved during the Neogene (an event that in terms of morphological disparity and taxonomic diversity occurs for the only time during the entire evolu tionary history of these lineages). Salas-Gismondi et al. (2015, 2016) analyzed part of these hyper diverse crocodylian fossil records. These authors concluded that several Miocene assemblages are probably vinculated with different paleoenviron ments developed in relation to the geological evo lution of basins during the Neogene in Northern South America. They proposed that crocodylian associations in shallow water paleoenvironments, like lagoons, swamps, and marginal marine em bayments (e.g., several early Middle Miocene de posits) are characterized by a predominance of gavialoids with body morphotypes typical of shal low water piscivores forms (e.g., adults with or bits not protruded such as Gryposuchus pachaka mue Salas-Gismondi et al., 2016, Piscogavialis jugaliperforatus and Siquisiquesuchus venezuel ensis) and medium sized alligatorids, including caimanines with crushing dentitions with more grinding feeding habits (e.g., Gnatusuchus pe basensis, Kuttanacaiman iquitosensis, Caiman wannlangstoni Salas-Gismondi et al., 2015). Among these assemblages, large forms of al ligatorids are less frequent, although the enig matic but probably “gulp feeding” Mourasuchus atopus Langston, 1966 (Langston, 1965; Riff et al., 2010; Tineo et al., 2015; Cidade et al., 2017), and the predator Purussaurus neivensisMook (1941) are also registered in some Middle Miocene South American localities (such as in the late Middle Miocene of La Venta, Colombia; e.g., Langston, 1965). These interpretations sug gest that although most of early Middle Miocene caimanine alligatorids would have been endemic and became regionally extinct, others such as Mourasuchus and Purussaurus persisted in the Middle-Late Miocene in fluvial dominated pa leoenvironments (e.g., Mourasuchus arendsiBocquentin-Villanueva, 1984, from Venezuela, Brazil and Argentina; M. amazonensis Price, 1964, from Brazil; M. pattersoni Cidade et al., 2017, from Venezuela; Purussaurus brasilien sis Barbosa-Rodrigues, 1892, from Brazil and P. mirandaiAguilera et al., 2006, from Venezuela, and Mourasuchus sp. from Bolivia) and would have coexisted with large specialized piscivores (e.g., IkanogavialisSill, 1970; Hesperogavialis Bocquentin-Villanueva & Buffetaut, 1981; Gryposuchus colombianus Langston, 1965; G. croizati Riff & Aguilera, 2008; G. neogaeusBurmeister, 1885). Crushing caimans, such as Globidentosuchus brachyrostris Scheyer et al., 2013 and Caiman wannlangstoni Salas-Gismondi et al., 2015, were also found in rocks of ~7-9 Ma of the Urumaco Formation, indicating that niche was also occupied by caimanines in what is be lieved to be the last relict of the Pebas System en vironments (Hoorn et al., 2010; Salas-Gismondi et al., 2016).

The southernmost record of these neogene South American crocodylians is in the Late Miocene of northeastern Argentina (see below). In general terms, this crocodylian association is taxonomically similar to that of lower latitudes, with a greater diversity of Caimaninae, domi nated by medium to large sized caimans (e.g., Caiman australisBurmeister (1883); C. lute scensRovereto (1912), C. gasparinaeBona & Paulina Carabajal, 2013 and Caiman cf. C. lat irostris, Bona & Barrios, 2015; Bona et al., 2013) and a gavialoid, Gryposuchus neogaeus, that was interpreted as a highly aquatic and underwater feeding piscivorous crocodylian given its reduced skull pneumaticity (Bona et al., 2017). Among the large forms, Mourasuchus arendsi (= M. na tivusGasparini, 1985; Cidade et al., 2018) and generalist animal eating caiman like forms are also registered. Although several huge caimanine species have been described (e.g., Bravard, 1858; Burmeister, 1885; Rovereto, 1912; Rusconi, 1933; Gasparini, 1981, 1985), only C. lutescens and C. gasparinae (represented by a skull table and a partial skull, respectively) are currently recog nized and the presence of the Miocene mega predator Purussaurus was never mentioned in these latitudes (e.g., Bona & Barrios, 2015; Bona et al., 2013).

We present herein the first record of Purussaurus in the Late Miocene of Argentina together with a detailed description of this mate rial and a discussion of its paleogeographic and paleoenvironmental implications.

Geological and Paleontological Settings

In the Entre Ríos Province, the “Conglomerado osífero” crops out discontinuously in the river banks of the Paraná River and its tributar ies, from the city of Paraná northwards to Hernandarias (Fig. 1A). The tooth here described was collected in the Toma Vieja locality (31° 42’ 10’’S, 60° 28’ 35’’W), where this conglomerate is clearly distinguished by a visible erosive uncon formity from the mudstone and sandstone beds of the underlying Paraná Formation (Fig. 1B). The “Conglomerado osífero” is characterized by well consolidated levels of fine cross stratified gravel sandstone and well sorted fine to coarse grained cross stratified sandstone beds, and clayed mud stone lenses, which concentrated abundant fos sil bones and teeth of fragmented and disasso ciated vertebrates (Brandoni & Noriega, 2013). These skeletal fragments are heavy and well mineralized and belong mostly to continental vertebrates, although a few mostly reworked ma rine forms can be represented (e.g., Cione et al., 2000). Traditionally, the “Conglomerado osífero” was considered as part of the fluvial system of the Ituzaingó Formation that outcrops in Entre Ríos Province (Frenguelli, 1920; Aceñolaza, 1976, 2000; Brunetto et al., 2013; Schmidt et al., 2020). Particularly, Brunetto et al. (2013) and Brandoni et al. (2019) regarded the “Conglomerado osífe ro” as part of the Lower Member of the Ituzaingó Formation and interpreted that it corresponds to a continental paleoenvironment dominated by a braided fluvial succession. However, Pérez (2013a) considered that these levels correspond to fluvial tide influenced channels of a marginal marine paleoenvironment and assigned them to the upper levels of the Paraná Formation.

Fig. 1 Geographic and stratigraphic settings of MAS-PV 386. 

In the absence of radiometric dating, the age of the “Conglomerado osífero” has been estimated by biostratigraphic correlation to other Neogene units, based on its mammal content and stratigraphic position. Thus, the age of the “Conglomerado osífero” is mainly interpreted to be Huayquerian (ca. 9-6.8 Ma sensuCione et al., 2000), or alternatively to the Chasicoan-Huayquerian lapse (ca. 10-6.8/5.3 Ma, Brandoni, 2013), and consequently corre lated to the Tortonian-Messinian (Late Miocene) (International Chronostratigraphic Chart, 2022). 86Sr/87Sr dating of mollusks from the underly ing Paraná Formation in the locality of Punta Gorda (Entre Ríos Province; Fig. 1A), indicates ages of 9.47 Ma (Tortonian; Pérez, 2013b) and 7.55-6.67 Ma (Tortonian-Messinian; del Río et al., 2018). Considering the relationship between the association of vertebrates recovered from the “Conglomerado osífero” and that of other Neogene units (see Cione et al., 2000; Brandoni, 2013; Schmidt et al., 2020), as well as the proposed age for the Paraná Formation (Pérez, 2013b; del Río et al., 2018), a Late Miocene age can be sug gested for the “Conglomerado osífero”.

MATERIAL AND METHODS

MAS-PV 386 was described macro and micro scopically. For the macroscopic anatomical analy sis comparisons with teeth of extant and Miocene caimanines were made, with first hand materi als, photographs taken from literature (Tab. 1), or own photographs. Terminology used for the spatial orientation of the tooth follows Smith & Dodson (2003); however, we decided to add the term “vestibular” as synonym of “labial”, since reptiles do not have lips. The microscopic analy sis was made by the Environmental Scanning Electron Microscope ESEM-FEI Quanta 200 of the LIMF. In addition, chemical element map ping tools (major elements) were used, and Backscattered Electrons (BE) method. The lat ter, based on the detection of the atomic num ber (Z), provides an image of the distribution of chemical elements in the material that makes up the entire piece, with the darkest areas be ing those with the lowest Z and the lightest and bright ones with higher Z (Fig. 2).

Fig. 2 Images of the tooth taken from the Environmental Scanning Electron Microscope (ESEM). (A) general view of the labial surface without metal coverage, using the low vacuum technique showing the vertical fractures and the cavities in the surface of the piece. (B) detail of the crenulated margin on the lingual aspect of the tooth, with vertical and transverse fractures. (C) detail of the mesio-distal edge of the tooth in vestibular (labial) view showing the crenulation typical of pseudozifodont teeth (indicated by arrows). (D) vestibular aspect of the tooth observed with Backscattered electrons showing fractures (in black) and positive surfaces (in white); the box delimits the area of mapping of chemical elements, carried out with EDAX. (E-H), details of the distribution of the chemical elements after the EDAX analysis: (E) phosphorus; (F) calcium; (G) iron; (H) silicon distributions. Note that the iron and the silicon are present mainly in the fractures and cavities of the tooth. 

Institutional Abbreviations. AMU-CURS, Alcaldía del Municipio de Urumaco, Urumaco, Venezuela; DGM, Divisão Geologia y Mineralogia, Rio de Janeiro, Brazil; MACN-PV, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Colección Paleontología Vertebrados, Ciudad Autónoma de Buenos Aires, Argentina; MAS-PV, Museo de Ciencias Naturales y Antropológicas “Prof. Antonio Serrano”, Colección Paleontología Vertebrados, Paraná, Entre Ríos, Argentina; MCC-URU, Museo de Ciencias Naturales de Caracas-Urumaco, Caracas, Venezuela; MLP, Museo de La Plata, La Plata, Buenos Aires, Argentina; LIMF, Laboratorio de Investigaciones de Metalurgia Física “Ing. Gregorio Cusminsky”, Facultad de Ingeniería, Universidad Nacional de La Plata, Buenos Aires, Argentina, UFAC, Universidade Federal do Acre, Rio Branco, Brazil.

RESULTS

Systematic Paleontology

CrocodyliformesHay, 1930 (Benton & Clark, 1988)

CrocodyliaGmelin, 1789

ALLIGATORIDAE Gray, 1844

CaimaninaeBrochu, 1999

PurussaurusBarbosa-Rodrigues, 1892

Purussaurus sp.

Type species. Purussaurus brasiliensisBarbosa-Rodrigues, 1892.

Referred material. MAS-PV 386, incomplete tooth preserving the apex sector of an almost well preserved crown (Fig. 3).

Fig. 3 Isolated tooth of Purussaurus sp. MAS-PV 386 in (A) vestibular; (B) lingual; and (C) mesio-distal views. Abbreviations: cr, crenulations. Scale bar = 20 mm. 

Locality and horizon of the new specimen. Toma Vieja locality, near Paraná City (Entre Ríos Province, Argentina), “Conglomerado osífero” (traditionally considered as the base of Ituzaingó Formation, Brunetto et al., 2013), Late Miocene (Brandoni, 2013; Brunetto et al., 2013; Schmidt et al., 2020).

Description. MAS-PV 386 consists of a frag mentary tooth that preserves most of the apical sector of the crown, which is conical but slightly compressed and lingually curved. In lingual and vestibular views, the mesial and distal margins are straight in the apical region but more curved in the base of the preserved part of the crown, where the tooth is subcircular in transverse sec tion, with a vestibular-lingual width equal to 16.6 mm, and a mesiodistal width equal to 19.7 mm (both measured at the base of the piece). This minimal but abrupt increase in tooth width due to curving of the mesial and distal margins is present, although more marked, in other teeth assigned to Purussaurus (e.g., DGM 1128, Souza et al., 2016, figure 3 F-H).

The tooth apex is rounded, showing a partial wear of the enamel apical surface, a condition commonly seen in worn or shed teeth of all croc odiles. The enamel of the lingual and vestibular (or labial, sensuSmith & Dodson, 2003) surfaces of the crown are uniformly ornamented with fine anastomosed striae or ridges separated by smooth grooves, extending from the apex to the base along the entire surface of the crown. These fine apicobasal ridges are transversely crossed by thin irregular lines, which observed under mag nification give the enamel a cracked appearance.

The crown shows a conspicuous carina that extends continuously along the mesial and dis tal faces of the tooth dividing the crown into a vestibular and a lingual subequal sectors. This crenulated carina is preserved in several sectors of the mesial and distal margins, it is exclusively formed by the enamel and bears fine but very marked parallel crenulations, oriented perpen dicularly to the carina. Under magnification (SEM) it can be verified that these crenulations are formed by rounded parallel short crests sepa rated by a shallow valley of enamel, distributed on both the labial and lingual surfaces of the carina (Figs. 2B-C, 3C). The density of these car inae is 5 per millimeter. This condition is called pseudoziphodonty (or false ziphodonty; Prasad & de Broin, 2002) and differs from the ziphodont condition (serrated teeth) present in other archo saurs, in which the crenulations are formed by both the dentine and the enamel (Prasad & de Broin, 2002).

Several features acquired during the fossil ization and depositional processes of MAS-PV 386 can be observed. In a macroscopic view, dam aged areas are present at the base and the mesial and distal margins of the tooth, with worn sur faces and fractures (Fig. 3). Under magnification (SEM) an evident wear can be observed at the apex of MAS-PV 386, and several excoriations associated with longitudinal microfractures run ning from the apex to the base and connected to each other with finer subhorizontal microfrac tures (Fig. 2A). The longitudinal micro fractures are arranged in the smooth grooves or valleys between the apicobasal striae that constitute the general ornamentation of the crown (Figs. 2A, 3). The vestibular surface of the tooth shows a process of micro alveolarization, identified from the presence of small depressions distributed all over the surface of the enamel. Finally, the tooth is broken at the base and, given the nature of this fracture, it can be inferred that it was sepa rated from the skull after fossilizing.

Comparisons. Teeth preserved implanted in the upper and lower jaws are scarce in the croco dylian fossil record. In the case of Purussaurus, few teeth were recovered in situ and described in the literature (e.g., Langston, 1965; Aguilera et al., 2006; Aureliano et al., 2015; Souza et al., 2021). A gradual transition in the shape and size of teeth has also been described for this taxon, from taller and pointed anterior teeth to broader, lower, and more bulbous posterior ones (Langston, 1965; Aureliano et al., 2015). The teeth of Purussaurus have been described as rounded in a basal section but with crowns tending to be compressed (Langston, 1965) and bearing pseudoziphodont ridges. Anteriormost, larger, conical and sharp teeth of both upper and mandibular series of Purussaurus have been de scribed as slightly compressed and lingually and distally curved (Langston, 1965; Aguilera et al., 2006; Aureliano et al., 2015). In P. mirandai the premaxillary teeth are sharp, anteroposteriorly and labiolingually curved; these teeth are rela tively compressed as MAS-PV 386 (with a ves tibular-lingual width of 15-30 mm and a mesi odistal width of 19-39 mm, sensu Aguilera et al., 2006). Due to its dimensions and proportions, MAS-PV 386 is more similar to the premaxillary second tooth of P. mirandai (e.g., AMU-CURS-135, described by Aguilera et al., 2006), although given that MAS-PV 386 is an isolated tooth, its relative size and position in the tooth row cannot be specified since the body size of the individual is unknown. Some posterior maxillary teeth of P. mirandai are preserved in some specimens (e.g., AMU-CURS-135, MCC URU-115-72V) and as in most of caimanines, these teeth are blunt, more rounded and lower than the anterior ones, with a general morphology clearly different from MAS-PV 386. The dentary teeth arrangement of P. mirandai is similar to other caimanines with the anterior teeth larger, taller and sharper, being the mandibular tooth 4 the tallest of the first teeth preserved (e.g., AMU-CURS-135). In this species mandibular teeth are more compressed than the teeth of the upper jaw and than in MAS-PV 386. Following this reasoning, MAS-PV 386 could cor respond to a tooth of the upper series.

In relation to the crown ornamentation, the teeth of Purussaurus have been described as pseudoziphodont (see below). All these teeth pres ent mesiodistal carinae, sometimes incompletely preserved and with fine striations perpendicular to the surface of the crown. In P. mirandai, the third premaxillary teeth of MCC URU-115-72V and some isolated teeth associated with AMU-CURS-135 show a striae density of 3 per 5 mm, different from MAS-PV 386 in which the density of these striae is 5 per millimeter. Finally, the enamel of isolated teeth assigned to Purussaurus has been described by several authors (e.g., Langston, 1965; Aguilera et al., 2006; Aureliano et al., 2015; Souza et al., 2016, 2021) which con clude that in smaller teeth (especially in the posterior and more bulbous ones), the enamel is generally wrinkled whereas larger teeth gener ally show smooth enamel but with longitudinal and transverse lines along the crown, conditions similar to those of MAS-PV 386.

DISCUSSION

Among crocodyliforms, ziphodont teeth are characteristic of carnivorous species with in ferred terrestrial habits (as well as a few marine metriorhynchids; Gasparini et al., 2006). Ziphodont teeth are common among predatory species within the diverse clade Notosuchia, such as peirosaurids (e.g., MontealtosuchusCarvalho et al., 2007, Lomasuchus Gasparini et al., 1991) and baurusuchids (e.g., BaurusuchusPrice, 1945; e.g., Riff & Kellner, 2011) from the Cretaceous and the sebecids from the Paleogene-Neogene of South America (e.g., SebecusSimpson, 1937; Sahitysuchus Kellner et al., 2014; e.g., Colbert, 1946). Ziphodont teeth also occur in eusuchians of supposedly terrestrial habits such as the planocraniids (e.g., PlanocraniaLi, 1976 and BoverisuchusKuhn, 1938; e.g., Brochu, 2012) and mekosuchines (e.g., QuinkanaMolnar, 1981 and KambaraWillis et al., 1993; e.g., Brochu, 2001; Buchanan, 2009). Pseudoziphodont teeth are less common in non eusuchian crocodyli forms, being reported in some peirosaurids (e.g., BarcinosuchusLeardi & Pol, 2009) and atopos aurids (Venczel & Codrea, 2019). The presence of pseudoziphodont teeth is even less frequent within Crocodylia. In particular, the only record of pseudoziphodont teeth for the Cenozoic of South America is restricted to the large caima nine Purussaurus and, in fact, this feature has been regarded as a diagnostic character for this genus (Souza et al., 2021).

Table 1 List of published materials used for morphological comparisons. 

The general morphology of MAS-PV 386 is like the anterior teeth of specimens assigned to Purussaurus from northern regions (e.g., Brazil, Colombia), in which the anterior teeth have slightly flattened crowns subcircular at their bases (Langston, 1965; Aguilera et al., 2006; Aureliano et al., 2015; Souza et al., 2016, 2021). Considering the general structure of the enamel of MAS-PV 386, it also resembles specimens as signed to Purussaurus in having longitudinal and transverse striae along the crown (e.g., DGM 1128-R and DGM 1194-R, Souza et al., 2016, fig ure 3 F-I; Aureliano et al., 2015, figure 5). The pseudoziphodonty, the macro and microscopic ap pearance of the enamel, together with the general shape of the tooth, allows us to assign MAS-PV 386 to the genus Purussaurus. However, the lack of species level diagnostic features in the teeth of each species of this genus precludes assigning MAS-PV 386 to any of the known Purussaurus species. Furthermore, MAS-PV 386 differs from teeth assigned to P. mirandai, P. neivensis, and P. brasiliensis, which have been described as curving backwards and slightly inwards in these species (Langston, 1965; Aguilera et al., 2006; Aureliano et al., 2015; Souza et al., 2021). As oc cur in most generalist alligatorids, the dentition of Purussaurus is heterodont in shape and size, showing a general transition from taller conical pointed anterior teeth (with some hypertrophied teeth such as the 4th dentary tooth, 3rd/4th pre maxillary teeth and 2nd/3rd maxillary teeth) to lower and rounded posterior teeth which are more button like shaped (e.g., Aguilera et al., 2006; Aureliano et al., 2015). After the anatomi cal comparisons here made, MAS-PV 386 is with in the range of size variation of Purussaurus and the morphology of the crown indicates that it is probably an anterior tooth. As it is an isolated tooth, the position of MAS-PV 386 in the teeth row cannot be specified. However, compared with the proportions of the less compressed upper teeth and the relatively more compressed lower teeth of Purussaurus mirandai, the proportions of MAS-PV 386 indicate that it could be a tooth from the upper series (premaxillary tooth or an terior maxillary tooth).

In addition to the anatomical features, the preservation traits observed in MAS-PV 386 al low us to recognize the effects of the taphonomic processes that affected the material. From the BE analysis of the SEM, differences in the chemical elements and density of the materials that com pose the surface of the tooth are identified (Fig. 2 EH). By mapping the chemical elements that conform the surface of the tooth, it was possible to verify the typical presence of calcium (Ca2+) and phosphorus (P5+), which constitute the original components of the tooth (hydroxyapa tite), but also the presence of silicon (Si) and iron (Fe). In MAS-PV 386, Si and Fe fill the fractures and probably come from the silicoclastic sedi ment of the conglomerate (terrigenous material) and from authigenic precipitation as ferruginous cement (hematite, Fe2O3), respectively, during the fossil-diagenetic processes (Figs. 2G-H). The presence of longitudinal, transverse, and perpen dicular fractures (respect of the apicobasal axis of the tooth) (Fig. 2AD) is characteristic of a fragile tooth that loses the organic component that gives it the resistance of the structure. These fractures together with the small depressions distributed all over the vestibular surface of the enamel (mi cro alveolarization) would indicate that the piece suffered some abrasion by roll of little magnitude generated by the silicoclastic granular sediment of the bottom of the fluvial channel where it was accumulated.

Analyzing crocodylian assemblages from other contemporary South American localities, such as Solimões and Urumaco formations, Purussaurus is one of the taxa that cohabited in the Late Miocene mega wetland systems. Within these associations, caimanines (such as Mourasuchus and different Caiman species) and gavialoids (such as Gryposuchus) are always registered showing differences in their sizes and snout, jaws and teeth shapes. This morphologi cal variability has been interpreted as evidence of niche partitioning, which results in optimizing the availability of resources and avoiding compe tition (Aureliano et al., 2015). In addition to the large size of Purussaurus species, the pseudozi phodont teeth suggest that they would have been active predators that included large vertebrates in their diets (e.g., Pujos & Salas-Gismondi, 2020). This study confirms that Purussaurus would have been a component of the Late Miocene Argentinian crocodylofauna occupying a separate niche from piscivorous gavialoids, animalivore caimans and Mourasuchus (Tab. 2).

Table 2 List of crocodylians of the “Conglomerado osífero” (Ituzaingó Formation, Paraná Province, Argentina). 

The sedimentological characteristics ob served in the “Conglomerado osífero” in the Toma Vieja locality are mainly given by channel fill deposits interpreted as a braided fluvial sys tem (e.g., Brunetto et al., 2013; Brandoni et al., 2019). As mentioned above, these levels rest un conformably on the shallow marginal marine de posits of the Paraná Formation through an ero sive boundary, interpreted by some authors as a regional erosive surface related to the basal sec tion of the Ituzaingó Formation (Brunetto et al., 2013; Brandoni et al., 2019). The erosive coarse-grained deposits of the “Conglomerado osífero”, together with the taphonomic characteristics of most of its fossils (which are disarticulated, frag mentary, and with evidence of transport) suggest that this association represents a mixture of fau nas, mainly continental with few marine taxa of different ages (Cione et al., 2000; Schmidt et al., 2020). Beyond this scenario, the now documented presence of Purussaurus in the “Conglomerado osífero” suggests that ecosystems associated with the southernmost South American Miocene wetlands would have been taxonomically simi lar to those of lower latitudes (e.g., Hoorn et al., 2010, 2022; Tineo et al., 2015; Tineo, 2020). Particularly the presence of Gryposuchus neo gaeus and caimanines such as Mourasuchus ar endsi, Purussaurus, and several species for the moment assigned to Caiman (Bona & Barrios, 2015; Bona et al., 2013) in the Late Miocene of Paraná (Tab. 2) proposes a wide geographic dis tribution of these Neogene fluvial systems with a similar ecological complexity for the entire re gion in South America. Among the fossil materi al of crocodylians of the “Conglomerado osífero”, Gryposuchus neogaeus is the most complete specimen recovered so far (i.e., MLP 26-413, an almost complete skull; Gasparini, 1968). Caimanines, on the other hand, are represented by isolated skulls and postcranial fragments which would indicate that most of these specimens will have been transported from their source area. In this scenario, MAS-PV 386 is another example of this taphonomical features. Although a regional envi ronmental reconstruction is necessary to inter pret the different continental sub-environments that would have developed in this part of the basin, the taxonomic diversity of crocodylians recognized in the “Conglomerado osífero” indi cates the presence of warm humid environments with large amounts of water, capable of to with stand large piscivores gavialoids and huge cai manines along the megapredator Purussaurus.

CONCLUSIONS

The record of the tooth MAS-PV 386 in the “Conglomerado osífero” in Entre Ríos Province allows us to propose for the first time the pres ence of Purussaurus in the Late Miocene of Argentina. Although isolated indeterminate re mains of large crocodylians have been described in the “Conglomerado osífero” (such as cranial and postcranial fragments of vertebrae, ribs, long bones, and osteoderms; Bravard, 1858; Burmeister 1883, 1885; Rovereto, 1912; Rusconi, 1933), at the moment this genus was geo graphically restricted to Miocene beds of Brazil, Colombia, Perú, and Venezuela (Aguilera et al., 2006; Aureliano et al., 2015).

This new finding represents the southern most record of one of the largest known preda tors of neosuchian crocodiles. The presence of this mega carnivore alligatorid suggests a greater taxonomic diversity for the huge caimanines in Late Miocene wetlands in northeast Argentina. The potential faunistic association of large croco dylians such as Gryposuchus, Purussaurus, and giant caimans allows to explore the hypothesis of a niche partitioning already inferred for other Miocene northernmost South American localities given by the coexistence of piscivorous and other animal eating crocodylians. This possible setting proposes the existence of more complex environ ments capable of sustaining all this crocodilian fauna and therefore a more complex scenario for inland wetland and fluvial ecosystems devel oped in the Late Miocene in the South American Chaco Parana Basin.

ACKNOWLEDGEMENTS

We want to thank the Museo de Ciencias Naturales y Antropológicas “Prof. Antonio Serrano” of Paraná City (Entre Ríos Province, Argentina), especially to Graciela Ibargoyen, for providing us with the material studied here and access to the museum’s collections. Finally, we would like to thank Agustín Martinelli and Rodolfo Salas-Gismondi for the valuable com ments that helped improve the final version of the manuscript.

REFERENCES

Aceñolaza, F.G. 1976. Consideraciones bioestratigráfi cas sobre el Terciario marino de Paraná y alrededo res. Acta Geológica Lilloana 13: 91-107. [ Links ]

Aceñolaza, F.G. 2000. La Formación Paraná (Mioceno medio): estratigrafía, distribución regional y unida des equivalentes. In: F.G. Aceñolaza, & R. Herbst (eds.), El Neógeno de Argentina, pp. 191-238. Serie de Correlación geológica del Instituto Superior de Correlación Geológica, San Miguel de Tucumán. [ Links ]

Aguilera, O.A., D. Riff & J. Bocquentin‐Villanueva. 2006. A new giant Purussaurus (Crocodyliformes, Alligatoridae) from the upper Miocene Urumaco Formation, Venezuela. Journal of Systematic Palaeontology 4(3): 221-232. [ Links ]

Aureliano, T., A.M. Ghilardi, E. Guilherme, J.P. Souza-Filho, M. Cavalcanti &D. Riff. 2015. Morphometry, bite-force, and paleobiology of the Late Miocene Caiman Purussaurus brasiliensis. PloS One 10(2): e0117944. doi:10.1371/journal.pone.0117944. [ Links ]

Barbosa-Rodrigues, J.B. 1892. Les reptiles fossils de la Vallée de L’Amazone. Vellosia Contribuições do Museu Botânico do Amazonas 2: 41-60. [ Links ]

Benton M.J. & J.M. Clark. 1988. Archosaur phylogeny and the relationships of the Crocodylia. In: Benton M.J. (ed), The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds, pp. 295-338. Clarendon Press, Oxford. [ Links ]

Bocquentin-Villanueva, J. 1984. Um nuevo Nettosuchidae (Crocodylia, Eusuchia) provenien te de la Formación Urumaco (Mioceno Superior), Venezuela. Ameghiniana 21: 1-8. [ Links ]

Bocquentin-Villanueva J, & E. Buffetaut. 1981. Hesperogavialis cruxenti n. gen., n. sp., nouve au gavialide (Crocodylia, Eusuchia) du Miocène Supériur (Huayquerien) d’Urumaco (Venezuela). Geobios 14: 415-419. [ Links ]

Bona, P. & F. Barrios. 2015. The Alligatoroidea of Argentina: an update of its fossil record. In: M. Fernández & Y. Herrera (eds.), Reptiles Extintos - Volumen en Homenaje a Zulma Gasparini, pp. 143-158. Publicación Electrónica de la Asociación Paleontológica Argentina, Ciudad Autónoma de Buenos Aires. [ Links ]

Bona, P. & A. Paulina Carabajal. 2013. Caiman gaspar inae sp. nov., a huge alligatorid (Caimaninae) from the late Miocene of Paraná, Argentina. Alcheringa: An Australasian Journal of Palaeontology: 1-12. doi:10.1080/03115518.2013.785335 [ Links ]

Bona, P., A. Paulina Carabajal & Z. Gasparini. 2017. Neuroanatomy of Gryposuchus neogaeus (Crocodylia, Gavialoidea): a first integral descrip tion of the braincase and endocranial morpho logical variation in extinct and extant gavialoids. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 106: 235-246. [ Links ]

Bona, P., D. Riff & Z. Gasparini. 2013. Late Miocene crocodylians from northeast Argentina: new ap proaches about the austral components of the Neogene South American crocodylian fauna. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103: 1-20. [ Links ]

Boonstra, M., M.I.F. Ramos, E.I. Lammertsm, P.O. Antoine & C. Hoorn. 2015. Marine connections of Amazonia: Evidence from foraminifera and dino flagellate cysts (early to middle Miocene, Colombia/Peru). Palaeogeography Palaeoclimatology Palaeoecology. 417: 176-194, doi: 10.1016/j.palaeo.2014.10.032. [ Links ]

Brandoni, D. 2013. Los mamíferos continentales del “Mesopotamiense” (Mioceno Tardío) de Entre Ríos, Argentina. Diversidad, edad y paleobiogeografía. In: D. Brandoni & J. I. Noriega (eds.), El Neógeno de la Mesopotamia argentina, pp. 179-191. Asociación Paleontológica Argentina, Publicación Especial, Ciudad Autónoma de Buenos Aires. [ Links ]

Brandoni, D. & J.I. Noriega (eds.). 2013. El Neógeno de la Mesopotamia argentina. Asociación Paleontológica Argentina, Publicación Especial 14, 221 pp. [ Links ]

Brandoni, D., M. Brea, E. Brunetto, J.M. Diederle, M.J. Franco, F. Gois Lima, A.I. Lutz, J.I. Noriega, L.M. Pérez, G. Schmidt & A.F. Zucol. 2019. Paleontología del Mioceno tardío de la región Noreste de Argentina. In: N. Nasif, G. Esteban, J. Chiesa, A. Zurita & S. Zurita (eds.), Mioceno al Pleistoceno del centro y norte de Argentina, pp. 131-162. Opera Lilloana, San Miguel de Tucumán. [ Links ]

Bravard, A. 1858. Monografía de los terrenos terciarios del Paraná. Reimpresión facsimilar, Imprenta del Congreso de la Nación, Buenos Aires, 1995, V-XII + 107p. [ Links ]

Brochu, C.A. 1999. Phylogenetics, taxonomy and his torical biogeography of Alligatoroidea. In: T. Rowe, C.A. Brochu & K. Kishi (eds.), Cranial morphol ogy of Alligator mississippiensis and phylogeny of Alligatoroidea, pp. 9-100. Society of Vertebrate Paleontology, Memoir 6, Washington. [ Links ]

Brochu, C.A. 2001. Crocodylian snouts in space and time: phylogenetic approaches toward adaptive ra diation. American Zoologist 41(3): 564-585. [ Links ]

Brochu, C.A. & A.D. Rincon. 2004. A gavialoid cro codylian from the Lower Miocene of Venezuela Special Papers in Palaeontology 71: 61-78. [ Links ]

Brochu, C.A. 2012. Phylogenetic relationships of Palaeogene ziphodont eusuchians and the sta tus of Pristichampsus Gervais, 1853. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103(3-4): 521-550. [ Links ]

Brunetto, E., J.I. Noriega & D. Brandoni. 2013. Sedimentología, estratigrafía y edad de la Formación Ituzaingó en la provincia de Entre Ríos, Argentina. In: D. Brandoni & J. I. Noriega (eds.), El Neógeno de la Mesopotamia argentina, pp. 13-27., Asociación Paleontológica Argentina, Publicación Especial, Ciudad Autónoma de Buenos Aires. [ Links ]

Buchanan, L.A. 2009. Kambara taraina sp. nov. (Crocodylia, Crocodyloidea), a new Eocene meko suchine from Queensland, Australia, and a revision of the genus. Journal of Vertebrate Paleontology 29 (2): 473-486. [ Links ]

Burmeister, G. 1883. Reprint of Bravard, 1858: Monografía de los terrenos marinos terciarios del Paraná. Anales del Museo Público de Buenos Aires 3: 45-94. [ Links ]

Burmeister, G. 1885. Examen crítico de los mamíferos y reptiles fósiles denominados por Don Augusto Bravard y mencionados en su obra precedente. Annales del Museo Nacional de Buenos Aires 3: 95-173. [ Links ]

Carvalho I.S., F.M. de Vasconcellos & S.A. Simionato Tavares. 2007. Montealtosuchus arrudacamposi, a new peirosaurid crocodile (Mesoeucrocodylia) from the Late Cretaceous Adamantina Formation of Brazil. Zootaxa 1607: 35-46. [ Links ]

Cidade G.M., A. Solórzano, A.D. Rincón, D. Riff & A.S. Hsiou. 2017. A new Mourasuchus (Alligatoroidea, Caimaninae) from the late Miocene of Venezuela, the phylogeny of Caimaninae and considerations on the feeding habits of Mourasuchus. PeerJ. 5: e3056. [ Links ]

Cidade G.M., A. Solórzano, A.D. Rincón, D. Riff & A.S. Hsiou 2018. Redescription of the holotype of the Miocene crocodilian Mourasuchus arendsi (Alligatoroidea, Caimaninae) and perspectives on the taxonomy of the species. Historical Biology 1-17. doi: 10.1080/08912963.2018.1528246. [ Links ]

Cione, A.L., M.M. Azpelicueta, M. Bond, A. Carlini, J. Casciotta, M.A. Cozzuol, M. de la Fuente, Z. Gasparini, F. Goin, J. Noriega, G. Scillato-Yané, L. Soibelzon, E. Tonni, D. Verzi & G. Vucetich. 2000. Miocene vertebrates from Entre Ríos Province, Argentina. In: F.G. Aceñolaza, & R. Herbst (eds.), El Neógeno de Argentina, pp. 191-238. Serie de Correlación geológica del Instituto Superior de Correlación Geológica, San Miguel de Tucumán. [ Links ]

Colbert, E.H. 1946. Sebecus, representative of a pecu liar suborder of fossil Crocodilia from Patagonia. Bulletin of the American Museum of Natural History 87 (4): 217-270. [ Links ]

Del Río, D.C., S. Martínez, J. McArthur, T. Matthew, & L.M. Pérez. 2018. Dating late Miocene marine incursions with Sr-Isotope stratigraphy (Argentina and Uruguay): a reappraisal of the paleogeography of the “Paranense” sea. Journal of South American Earth Sciences 85: 312-33 [ Links ]

Frenguelli, J. 1920. Contribución al conocimiento de la geología de Entre Ríos. Boletín de la Academia Nacional de Ciencias de Córdoba 24: 55-256. [ Links ]

Gasparini, Z. 1968. Nuevos restos de Rhamphostomopsis neogaeus (Burm.) Rusconi 1933, (Reptilia, Crocodilia) de “Mesopotamiense” (Plioceno Medio-Superior) de Argentina. Ameghiniana 5 (8): 299-308. [ Links ]

Gasparini, Z. 1981. Los Crocodylia fósiles de la Argentina. Ameghiniana 18: 177-205. [ Links ]

Gasparini, Z. 1985. Un Nuevo cocodrilo (Eusuchia) Cenozoico de América del Sur. Ministerio das Minas e Energia, Departamento Nacional da Produção Mineral, serie Geología Paleontología: /Estratigrafía 2: 51-53. [ Links ]

Gasparini, Z., L.M. Chiappe & M. Fernández. 1991. A new Senonian peirosaurid (Crocodylomorpha) from Argentina and a synopsis of the South American Cretaceous crocodilians. Journal of Vertebrate Paleontology 11(3): 316-333. [ Links ]

Gasparini, Z., D. Pol & L.A. Spalletti. 2006. An unusual marine crocodyliform from the Jurassic-Cretaceous boundary of Patagonia. Science 311(5757): 70-73. [ Links ]

Gmelin, J. 1789. Linnei systema naturae. GE Beer, Leipzig, 1057. [ Links ]

Gray, J.E. 1862. A synopsis of the species of alligators. Annals and Magazine of Natural History 10(35): 327-331. [ Links ]

Greb, S.F., W.A. DiMichele & R.A Gastaldo. 2006. Evolution and importance of wetlands in earth his tory. In: S.F. Greb & W.A DiMichele (eds.), Wetlands through time, pp. 1-40. Geological Society of America, Washington. [ Links ]

Gürich, G.J.E. 1912. Gryposuchus jessei: ein neues schmalschnauziges Krokodil aus den jüngeren ablagerungen des oberen Amazonas-Gebietes. Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten 26: 59-71. [ Links ]

Hastings, A.K., J.I. Bloch, C.A. Jaramillo, A.F. Rincón & B.J. MacFadden. 2013. Systematics and biogeog raphy of crocodylians from the Miocene of Panama. Journal of Vertebrate Paleontology 33: 239-263. [ Links ]

Hay, O.P. 1930. Second bibliography and catalogue of fossil Vertebrata of North America. Carnegie Institution of Washington Publication, Wasinton, 1077pp. [ Links ]

Hoorn, C., F.P. Wesselingh, J. Hovikoski & J. Guerrero. 2010. The development of the Amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). In: C. Hoorn & F.P. Wesselingh (eds.), Amazonia, Landscape and Species Evolution: A Look into the Past, pp. 123-142.467. Wiley-Blackwell Publishing, Oxford. [ Links ]

Hoorn, C., T. Kukla, G. Bogotá-Angel, E. van Soelen, C. González-Arango, F.P. Wesselingh, H. Vonhof, P. Val, G. Morcote-Ríos, M. Roddaz, E.L Dantas, R. Ventura Santo, J.S. Sinninghe, J.H. Damsté Kim & R.J. Morley. 2022. Cyclic sediment deposition by orbital forcing in the Miocene wetland of western Amazonia? New insights from a multidisciplinary approach. Global and Planetary Change 210: 103717. [ Links ]

International Commission on Stratigraphic. 2022. International chronostratigraphic chart. www.stratigraphy.orgLinks ]

Kellner, A.W., A.E. Pinheiro & D.A. Campos. 2014. A new sebecid from the Paleogene of Brazil and the crocodyliform radiation after the K-Pg boundary. PLoS One 9: e81386. [ Links ]

Kuhn, O. 1938. Die Crocodilier aus dem mittleren Eozän des Geiseltales bei Halle. Nova Acta Leopoldina 39: 313-28. [ Links ]

Langston, W. 1965. Fossil Crocodilians from Colombia and the Cenozoic history of the Crocodilia in South America. University of California Press, Berkeley, 167 pp. [ Links ]

Langston, W. 1966. Mourasuchus Price, Nettosuchus Langston, and the family Nettosuchidae (Reptilia: Crocodilia). Copeia 4: 882-885. doi:10.2307/1441424. [ Links ]

Leardi, J.M. &D. Pol. 2009. The first crocodyli form from the Chubut Group (Chubut Province, Argentina) and its phylogenetic position within basal Mesoeucrocodylia. Cretaceous Research 30(6): 1376-1386. [ Links ]

Li, J.L. 1976. Fossils of Sebecosuchia discovered from Nanxiong, Guangdong. Vertebrata PalAsiatica 14: 169-173. [ Links ]

Molnar, R.E. 1981. Pleistocene ziphodont crocodil ians of Queensland. Records of the Australian Museum 33(19): 803-834. doi:10.3853/j.0067-1975.33.1981.198. [ Links ]

Mook, C.C. 1941. A new fossil crocodilian from Colombia. Proceedings of the National Museum, Smithsonian Institution 91(3122): 55 -58. [ Links ]

Orfeo, O. & J.J. Neiff. 2008. Esteros del Iberá. Un enorme laboratorio a cielo abierto. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino: 415-425. [ Links ]

Paolillo, A. & O.J. Linares. 2007. Nuevos cocodri los Sebecosuchia del Cenozoico Suramericano (Mesosuchia: Crocodylia). Paleobiologia Neotropical 3: 1-25. [ Links ]

Pérez, L.M. 2013a. Nuevo aporte al conocimiento de la edad de la Formación Paraná, Mioceno de la pro vincia de Entre Ríos, Argentina. In: D. Brandoni & J. I. Noriega (eds.), El Neógeno de la Mesopotamia argentina, pp 13-27, Asociación Paleontológica Argentina, Publicación Especial. [ Links ]

Pérez, L.M. 2013b. Sistemática, Tafonomía y Paleoecología de los Invertebrados de la Formación Paraná (Mioceno), provincia de Entre Ríos, Argentina. Tesis Doctoral Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, 403 pp. [ Links ]

Prasad, G.V.R. & F.L De Broin. 2002. Late Cretaceous crocodile remains from Naskal (India): com parisons and biogeographic affinities. Annales de Paléontologie 88: 19-71. [ Links ]

Price, L.I. 1945. A new reptil from the Cretaceous of Brazil. Ministério da Agricultura, Divisão de Geología e Mineralogia 25: 1-8. [ Links ]

Price, L.I. 1964. Sôbre o crânio de um grande croco dilídeo extinto do alto Rio Juruá, Estado do Acre. Anais da Academia Brasileira de Ciências 36(1): 59-66. [ Links ]

Pujos, F. & R. Salas-Gismondi. 2020. Predation of the giant Miocene caiman Purussaurus on a mylodon tid ground sloth in the wetlands of proto-Amazo nia. Biological Letters 16: 20200239, http://dx.doi.org/10.1098/rsbl.2020.0239 [ Links ]

Quiroz, L.I. & C.A. Jaramillo. 2010. Stratigraphy and sedimentary environment of Miocene shallow to marginal marine deposits in the Urumaco trough, Falcon Basin, Western Venezuela. In: M. Sánchez-Villagra, O.A. Aguilera & A. A. Carlini (eds.), Urumaco & Venezuelan Paleontology, pp. 153-172. Indiana University Press Bloomington, ciudad. doi: 10.1007/s13358-015-0071-4. [ Links ]

Riff, D. & O.A. Aguilera. 2008. gha rials Gryposuchus: description of G. croizati n. sp. (Crocodylia, Gavialidae) from the Upper Miocene Urumaco Formation, Venezuela. Paläontologische Zeitschrift 82(2): 178-195. doi:10.1007/bf02988408 [ Links ]

Riff, D., P.S.R. Romano, G.R. Oliveira & O.A. Aguilera. 2010. Neogene crocodile and turtle fauna in Northern South America. In: C. Hoorn & F.P. Wesselingh (eds.), Amazonia, Landscape and Species Evolution, pp. 259-280. Wiley-Blackwell, Oxford. [ Links ]

Riff, D. & A.W.A. Kellner. 2011. Baurusuchid croco dyliforms as theropod mimics: clues from the skull and appendicular morphology of Stratiotosuchus maxhechti (Upper Cretaceous of Brazil). Zoological Journal of the Linnean Society 163(S1): 37-56. [ Links ]

Rovereto, C. 1912. Los cocodrilos fósiles en las capas del Paraná. Anales del Museo Nacional de Historia Natural de Buenos Aires 22: 339-368. [ Links ]

Rusconi, C. 1933. Observaciones críticas sobre rep tiles Terciarios de Paraná (Familia Alligatoridae). Revista de la Universidad Nacional de Córdoba 20: 1-52. [ Links ]

Salas-Gismondi, R, J.J. Flynn, P. Baby, J.V. Tejada-Lara, F.P. Wesselingh & P.O. Antoine. 2015. A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-Am azonian mega-wetlands. Proceeding of the Royal Society B 282: 20142490. http://dx.doi.org/10.1098/rspb.2014.2490. [ Links ]

Salas-Gismondi, R., J.J. Flynn, P. Baby , J.V. Tejada-Lara , J. Claude &P.O. Antoine. 2016. A new 13-million-year-old gavialoid crocodylian from Proto-Amazonian Mega-Wetlands reveals parallel evolu tionary trends in skull shape linked to longirostry. PLoS One 11(4): e0152453. doi:10.1371/journal.pone.0152453. [ Links ]

Salas-Gismondi, R., J.W. Moreno-Bernal, T.M. Scheyer, M.R. Sánchez-Villagra & C. Jaramillo. 2018. New Miocene Caribbean gavialoids and patterns of longirostry in crocodylians, Journal of Systematic Palaeontology 1-27. doi: 10.1080/14772019.2018.1495275. [ Links ]

Scheyer, T.M., O.A. Aguilera, M. Delfino, D.C. Fortier, A. A. Carlini, R. Sánchez, J. Carrillo-Briceño & L. Quiroz. 2013. Crocodylian diversity peak and extinction in the late Cenozoic of the northern Neotropics. Nature Communications 4: 1907, doi:10.1038/ncomms2940 [ Links ]

Schmidt, G.I., J.M. Diederle, E.R. Vallone, F. Góis, J. Tarquini, M.A. Fernández Osuna, M.G. Gottardi & D. Brandoni. 2020. New vertebrates from the Late Miocene of Entre Ríos Province, Argentina: diver sity, age, and paleoenvironment. Journal of South American Earth Sciences 101: 102618. https://doi.org/10.1016/j.jsames.2020.102618 [ Links ]

Sill, W.D. 1970. Nota preliminar sobre un nuevo gavial del Plioceno de Venezuela y una discusión de los gaviales sudamericanos. Ameghiniana 7:151-159. [ Links ]

Simpson, G.G. 1937. An ancient eusuchian crocodile from Patagonia American Museum Novitates 965: 19-20. [ Links ]

Smith, J.B. & P. Dodson. 2003. A proposal for a stan dard terminology of anatomical notation and orientation in fossil vertebrate dentitions. Journal of Vertebrate Paleontology 23(1):1-12. [ Links ]

Souza, R.G., G.M. Cidade, D.A. Campos & D. Riff. 2016. New crocodylian remains from the Solimões Formation (Lower Eocene-Pliocene), state of Acre, Southwestern Brazilian Amazonia. Revista brasi leira de paleontologia 19(2): 217-232. [ Links ]

Souza, R.G., K.L Bandeira, R.V. Pêgas, A.S. Brum, R. Machado, E. Guilherme &J.P. Souza-Filho, 2021. The history, importance and anatomy of the specimen that validated the giant Purussaurus brasiliensis Barbosa-Rodrigues 1892 (Crocodylia: Caimaninae). Anais da Academia Brasileira de Ciências 93: 1-20. [ Links ]

Souza-Filho, J.P., R.G. Souza, A.S Hsiou, D. Riff., E. Guilherme , F.R. Negri & G.M. Cidade. 2018. A new caimanine (Crocodylia, Alligatoroidea) species from the Solimões Formation of Brazil and the phylogeny of Caimaninae. Journal of Vertebrate Paleontology 38(5): e1528450, doi:10.1080/02724634.2018.1528450. ISSN 0272-4634. S2CID 91964360. [ Links ]

Spix, J.B. 1825. Animalia nova sive Species novae lacertarum quas initinere per Brasiliam an nis. MDCCCXVII-MDCCCXX jussu et auspiciis Maximiliani Josephi I. Bavariae Regis suscepto collegit etdescripsit Dr. J.B. de Spix. T.O. Weigel, Lipsiae, 26 pp. [ Links ]

Tineo, D.E. 2020. Facies model of a sedimentary record for a Pantanal-like inland wetland. Sedimentology 67: 3683-3717. [ Links ]

Tineo, D.E., P. Bona, L.M. Pérez, G.D. Vergani, G. González, D.G. Poiré, Z.N. Gasparini & P. Legarreta. 2015. Palaeoenvironmental implications of the giant crocodylian Mourasuchus (Alligatoridae, Caimaninae) in the Yecua Formation (late Miocene) of Bolivia. Alcheringa 39: 224-235. [ Links ]

Tineo, D.E., M.A. Comerio, L.H. Vigiani, G.S. Kurten Moreno & D.G. Poiré. 2021. Paleocli matic controls on the composition of inland wet land deposits, Chaco foreland basin, Central Andes. Journal of Sedimentary Research 92 (2): 112-133. https://doi.org/10.2110/jsr.2021.033 [ Links ]

Tineo, D.E., D. Moyano-Paz, A.N. Varela & D.G. Poiré. 2022. Onset of the Miocene Chaco foreland basin: depositional conditions, provenance and paleogeo graphic implications of the Tranquitas Formation (Argentina). International Journal of Earth Sciences 111: 1739-1771. https://doi.org/10.1007/s00531-022-02203-3 [ Links ]

Uba, C.E., C.A. Hasler, L.A. Buatois, A.K. Schmitt & B. Plessen. 2009. Isotopic, paleontologic, and ich nologic evidence for late Miocene pulses of marine incursions in the Central Andes. Geology 37: 827-830. [ Links ]

Venczel, M. & V.A. Codrea. 2019. A new Theriosuchus-like crocodyliform from the Maastrichtian of Romania. Cretaceous Research 100: 24-38. [ Links ]

Wesselingh, F.P., M.E Räsänen, G. Irion, H.B. Vonhof, R. Kaandorp, W. Renema & M. Gingras 2001. Lake Pebas: a palaeoecological reconstruction of a Miocene, longlived lake complex in western Amazonia. Cainozoic Research 1(1/2): 35-68. [ Links ]

Willis, P.M.A., R.E. Molnar & J.D. Scanlon. 1993. An early Eocene crocodilian from Murgon, southeast ern Queensland. Kaupia 3: 27-33. [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License