SciELO - Scientific Electronic Library Online

 
vol.28 número1AVANCES EN EL ESTABLECIMIENTO DE UNA LÍNEA DE BASE PARA EL MONITOREO DE COMUNIDADES DE PEQUEÑOS MAMÍFEROS NO VOLADORES DEL NOROESTE ARGENTINO índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

Compartir


Mastozoología neotropical

versión impresa ISSN 0327-9383versión On-line ISSN 1666-0536

Mastozool. neotrop. vol.28 no.1 Mendoza mar. 2021  Epub 01-Dic-2020

 

ARTÍCULO

Cryptonanus agricolai (DIDELPHIMORPHIA, DIDELPHIDAE) IN THE ATLANTIC FOREST CORE: OCCURRENCE OF A XERIC ASSOCIATED SPECIES IN A TROPICAL FOREST BIOME

Cryptonanus agricolai (Didelphimorphia, Didelphidae) no cerne da Mata Atlântica: ocorrência de uma espécie associada a ambientes xéricos em um bioma de floresta tropical úmida

Edú Baptista Guerra1 

Leonora Pires Costa2  3 

1Universidade Federal do Espírito Santo, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Laboratório de Mastozoologia e Biogeografia (LaMaB)

2Universidade Federal do Espírito Santo, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Laboratório de Mastozoologia e Biogeografia (LaMaB)

3Programa de Pós-Graduação em Ciências Biológicas (PPGBAN), Universidade Federal do Espírito Santo

Abstract

According to the Wallacean shortfall, knowledge about the geographic distribution of most species is still incomplete. Cryptonanus agricolai (Moojen, 1943) is a didelphid marsupial considered Data Deficient by IUCN, since species records are few and sparse. Although little information is available for the species, it is generally associated with xeric habitats from Caatinga and open formations of the Cerrado in east-central Brazil. Here we report the occurrence of C. agricolai in the Atlantic Forest core, a new ecoregion for the species, based on a recent collected voucher - identified through morphological and molecular analysis-from a Mussununga formation in Reserva Biológica do Córrego do Veado, southeastern Brazil. This record extends the occurrence of the species to more than 1 700 000 km2 and lower its altitudinal range limit to 108 m.

Resumo

De acordo com a Lacuna Wallaceana, o conhecimento sobre a distribuição geográfica da maioria das espécies ainda é incompleto. Cryptonanus agricolai (Moojen, 1943) é um marsupial didelfídeo avaliado como Deficiente em Dados pela IUCN, uma vez que existem poucos e esparsos registros para a espécie. Embora haja pouca informação disponível para tal espécie, ela é comumente associada a habitats xéricos da Caatinga e formações abertas do Cerrado no centro-leste do Brasil. Aqui relatamos, através de dados morfológicos e moleculares, registros de C. agricolai em localidades centrais na Mata Atlântica, não apenas provenientes de zonas de contato com os demais biomas nos quais a espécie é comumente associada. Configura-se assim, uma nova ecorregião de ocorrência para a espécie - com base em um novo registro em formação Mussununga na Reserva Biológica do Córrego do Veado, sudeste do Brasil. Nossos achados estendem a ocorrência da espécie para mais de 1 700 000 km2 e seu limite inferior de altitude para 108 m.

Palavras-chave corredor Central da Mata Atlântica; marsupial; mussununga; pitfall; lacuna wallaceana

INTRODUCTION

On the way to extend the knowledge of biodiversity, scientists often come across shortfalls on local-scale data. Those shortfalls generate uncertainty in all analyses of biodiversity, compromising the generality and validity of theoretical knowledge and the quality of conservation assessments and actions (Hortal et al. 2015). One of those recognized shortfalls is the Wallacean, which defines that, for the majority of taxa, geographical distributions are still poorly understood and contain many gaps, being frequently inadequate at all scales (Lomolino 2004; Whittaker et al. 2005). Such shortfall is particularly true for tropical species, especially for those hardly trapped and/or not abundant in communities, even though many of them possess high conservation value (Beck et al. 2018).

The Neotropical region is home to one of the richest mammal faunas in the world (Antonelli & Sanmartín 2011; Patterson & Costa 2012). Nevertheless, much of the diversity it houses is still unknown and there are huge sample gaps, even in regions with a long history of human settlement and research, as is the case of the Atlantic Forest (Bovendorp et al. 2017). Regarding the knowledge about Neotropical marsupials, within the last years the number of Didelphidae species has increased from 91 (Gardner 2008) to 103 recognized species (Astúa 2015). However, 15% of these are currently considered as Data Deficient based on IUCN designations (IUCN 2019). Although research, and con- sequently, the knowledge on the Neotropical fauna has increased in recent years, gaps in taxonomic and biogeographic knowledge of specious and yet elusive groups, such as the Neotropical small mammals, hinder conservation initiatives. Effective biodiversity conservation requires minimal knowledge about the targets of protection (Brito 2004), making it essential that efforts be devoted to cataloging, quantifying and mapping such biodiversity.

Cryptonanus is a didelphid genus that was previously recognized as belonging to the genus Gracilinanus, until morphological characters and molecular markers warranted its differentiation as a new genus (Voss et al. 2005). Currently, four species of Cryptonanus are recognized: C. agricolai (Moojen, 1943), C. chacoensis (Tate, 1931), C. guahybae (Tate, 1931) and C. unduaviensis (Tate, 1931), which are distributed throughout open habitats in tropical and subtropical ecoregions east of the Andes and south of the Amazon River, including the Caatinga, Chaco, Cerrado, Pampa, Yungas and Atlantic Forest (Díaz et al. 2002; Voss et al. 2005; D’Elía & Martínez 2006; Voss & Jansa 2009; Garcia et al. 2010; Quintela et al. 2011).

C. agricolai, is mostly found in xeric habitats in the Caatinga and open formations of the Cerrado biomes in east-central Brazil, from 400 to 760 m (Gardner 2008), but also occurs in contact zones with the Amazon (in northern Mato Grosso state, Bezerra et al. 2009) and the Atlantic Forest limits (seasonal tropical forests of Minas Gerais states; Gardner 2008).

Although there is few information available about its locomotion habits, most faunal surveys report captures in pitfall traps, suggesting a ground-dwelling locomotion (Astúa 2015), and probably an insectivore/omnivore diet. The conservation status for such species is assessed as Data Deficient based on IUCN criterion, since there are few and scattered records over a wide area, and little is known about its habitat requirements, thus continued efforts to improve its geographical distribution is greatly needed (Carmignotto et al. 2016).

Here we report the first records of C. agricolai in the Atlantic Forest core in southeastern Brazil, based on the identification via both morphological and molecular analysis of a recently collected specimen from Espírito Santo State. Additionally, we identify a previously reported Cryptonanus sp. from Rio de Janeiro State (Delciellos et al. 2016) as C. agricolai. Our findings reveal an estimated species distribution of 1 773 398 km2 and set its lowest altitudinal range limit to 108 m, in addition to confirm its presence in the Atlantic Forest.

MATERIALS AND METHODS

The Córrego do Veado Biological Reserve comprises a forested area of 2 357 ha in the municipality of Pinheiros, state of Espírito Santo, southeastern Brazil, where sec- ondary vegetation predominates (Ibama 2000). The surroundings of Córrego do Veado Biological Reserve are characterized by anthropic activities, such as cattle ranches and coffee, papaya, eucalyptus and rubber tree plantations (Moscal 2012). On October 17th, 2015, a specimen of a didelphid marsupial (LPC1636; collector number of Leonora Pires Costa) was caught in a pitfall trap at Córrego do Veado Biological Reserve (18°19’ S, 40°07’ W, altitude = 108 m; geographic coordinates were obtained with a Garmin 60CSx) in an area of Mussununga (i.e. “soft and wet white sand” in Tupi-Guarani; Meira-Neto et al. 2005), characterized by shrub and bush vegetation that develops in sandy soils (Fig. 1; Saporetti-Junior et al. 2012). The animal was secured as a museum voucher and deposited in the Mammal Collection at Universidade Federal do Espírito Santo under the number UFES-MAM 3075. Liver tissue samples were preserved in 70°GL ethanol and deposited in the Animal Tissue Collection at Universidade Federal do Espírito Santo under the number UFES-CTA 4116.

Biological information obtained from the collected individual included: reproductive stage, dental age class, body mass (BM, in grams) and external body measurements (in mm), including head-and-body length (HB), tail length (TL), hindfoot length including claw (HL) and ear length from notch (E). Skull was removed, cleaned, and measured using a digital caliper accurate to 0.01 mm. The following cranial and dental measurements were taken following Voss et al. (2005): condylobasal length (CBL), nasal breadth (NB), least interorbital constriction (LIB), zygomatic breadth (ZB), palatal length (PL), palatal breadth (PB), maxillary toothrow length (MTR), length of M1 to M4 (LM), and length of M1 to M3 (M1–M3).

Additionally, 801 bp of the mitochondrial gene cytochrome b (Cyt-b) were used for molecular analyses, as these have been shown to easily distinguish sister species of mammals (e.g., Bradley & Baker 2001; Agrizzi et al. 2012) and also because there are several Cyt-b sequences available for a considerable number of didelphid species in GenBank. A sequence from a specimen referred as Cryptonanus sp. from Rio de Janeiro (MZUSP 35409; catalog number of Museu de Zoologia da Universidade de São Paulo, Delciellos et al. 2016) was also included in the molecular analyzes. Sequence alignment was performed using CLUSTALW algorithm implemented in MEGA X (Kumar et al. 2018), with posterior manual edition. We performed BLAST searches in GenBank (<http://blast.st-va.ncbi.nlm.nih.gov/Blast.cgi>;) in order to determine the approximate association of the obtained sequences with published records. Phylogenetic inference of Maximum Likelihood (ML), Maximum Parsimony (MP) and Neighbor Joining (NJ) was generated in MEGA X using Tamura & Nei (1993) model of nucleotide substitution and variable sites following a gamma distribution (TN93+G). Bayesian analysis was performed in Mr. Bayes v3.2.6 (Ronquist & Huelsenbeck 2003). Phylogenetic trees were later edited in FigTree v1.4.3 (Rambaut & Drummond 2012). We also conducted systematic searches in online academic databases (Google Scholar, Scielo, Scopus, Web of Science) for occurrence localities of C. agricolai, in order to elaborate an updated distribution map of the known geographic range of the species– based on a minimum convex polygon that assemble our brand new record and literature records. We only considered as reliable those records that included a detailed description of how the specimen was identified.

RESULTS

The specimen (Fig. 2) UFES-MAM 3075 captured in a pitfall trap on 17th October 2015 was an adult male with dental age class 5 (all molars functional and permanent third premolar completely erupted; Tribe 1990). External, cranial and dental measurements are shown in Table 1. A combination of morphological aspects related to the upper premolars (P3 > P2) and fenestrae in the palate (large maxillopalatine fenestra, presence of palatal fenestra, posterolateral foramen, incisive foramen and absent of maxillary fenestra) led us to identify the specimen as belonging to the genus Cryptonanus (Fig. 3), according to Voss & Jansa (2009) and Rossi et al. (2012).

For accurate identification at the species level, we also used molecular approaches. An initial BLAST search revealed a 98% identity match with published specimen sequences of C. agricolai. The obtained phylogenetic inference grouped UFES-MAM 3075 (GenBank accession number MW477899) in a highly supported clade of C. agricolai (Bayesian posterior probability = 1). Maximum likelihood and Bayesian inference trees depicted the same topology - only the latter is showed (Fig. 4). We recovered, with strong support, C. agricolai and C. chacoensis as sister taxa, and these two species formed a marginally supported clade including C. guahybae, with C. unduaviensis as the outermost clade, and all together supporting the monophyly of the genus Cryptonanus. The literature review recovered various, unambiguous records of C. agricolai (Table 2), and thereafter a minimum convex polygon estimation of those locations suggests an extension of occurrence area of 1 773 398 km2 (Fig. 5).

DISCUSSION

The specimen UFES-MAM 3075 here identified as C. agricolai represents the first record of the species in the Central Atlantic Forest Corridor (Brazil 2006; Câmara & Galindo-Leal 2009), a region formerly considered outside its distributional range (Carmignotto et al. 2016). Previously, two specimens of C. agricolai had already been registered in the Atlantic Forest; however, one of them was tentatively assigned as agricolai (Souza et al. 2010) and the other was identified only up to the genus level (Delciellos et al. 2016). Therefore, the present study provides an accurate identification of specimens suspected to belong to C. agricolai, confirming its occurrence in the core of the Atlantic Forest biome, expands the extent of occurrence of the species by 324 452 km2 (Fig. 5; hatched area), and increasing its known distribution to approximately 1 773 398 km2. Additionally, the specimen UFES-MAM 3075 set the lower altitudinal limit for C. agricolai at 108 m above sea level (Table 2). Moreover, according to the geographical coordinates of a trap site in the Cerrado region mentioned in Bonvicino et al. (2012), we inferred the potential highest altitudinal limit of the species as 850 m, an increase of almost a 100 m of that previously suggested (400 to 760 m; Gardner 2008). Hence, we can now establish the altitudinal range of C. agricolai from 108 to 850 m.

Table 1 External, cranial and dental measurements (in millimeters) for samples of the species of Cryptonanus recorded in Brazil, based on data provided by Voss et al. (2005), Rossi et al. (2012), and Dias et al. (2015), and the specimen from Reserva Biológica do Córrego do Veado, Espírito Santo, here reported (UFES-MAM 3075). Number of measured individuals are indicated between parentheses. 

Table 2 Localities of Cryptonanus agricolai obtained from the literature and used as points to elaborate the map of extension of occurrence for the species (Fig. 5). Acronyms after hyphens indicate Brazilian states; BA = Bahia, CE = Ceará, ES = Espírito Santo, GO = Goiás, MG = Minas Gerais, MT = Mato Grosso, PE = Pernambuco, PI = Piauí, RJ = Rio de Janeiro, SE = Sergipe, TO = Tocantins. Asterisks (*) indicate values inferred from the geographic coordinates provided by authors. 

Fig. 1 Example of Mussununga formations in the Atlantic Forest of northern Espírito Santo at Reserva Natural Vale – 19°13’31” S, 39°58’46” W (photo: Geovane S. Siqueira). 

Besides changes in distributional and altitudinal ranges of C. agricolai, our work confirms the occurrence of the species, often associated with xeric habitats and open vegetation, in a central region of the Atlantic Forest domain, with points of occurrence far from the contact zones of this biome with either the Cerrado or Caatinga domains. Although the individual was captured in an ecoregion distinct from that usually related to C. agricolai, the species can still be primarily associated with xeric-open habitats, since the sampling site in Córrego do Veado Biological Reserve is dominated by patches of vegetation called Mussununga. Such formations are characterized by phytophysiognomies ranging from grasslands to woodlands over sandy soils that have high water retention, with a consistently hard and impermeable cementation layer, which causes flooding stress in the rainy season and drought stress in the dry season (Mecke et al. 2002; Horbe et al. 2004; Saporetti-Junior et al. 2012; Buso Junior et al. 2019). Despite the fact that Mussununga formations are threatened by many factors (e.g., fire, logging, road construction, and biological invasion), such kind of vegetation is still underrepresented in the context of studies conducted in the Brazilian Atlantic Forest (Eisenlohr et al. 2015; Heringer et al. 2019). This record of C. agricolai in Mussununga formations in the core of the Atlantic Forest opens the possibility that this species also occurs in other xeric phytophysiognomies in the ecoregion, such as dry restinga forests. It is worth mentioning that other species of mammals associated with open areas have been recorded in the Atlantic Forest, such as the canid Chrysocyon brachyurus (Xavier et al. 2017) and the sigmodontine rodent Calomys cerqueirai (Colombi & Fagundes 2015). However, it is uncertain whether these occurrences are due to recent changes on species distributions, following the opening of vast regions previously occupied by forests, or if these mammals already occurred in open phytophysiognomies of Atlantic Forest and are only now being registered.

In addition to C. agricolai, another species of the genus occurs in the South America diagonal of open formations (e.g., Chaco, Cerrado and Caatinga domains; Prado & Gibbs 1993). Cryptonanus chacoensis, is widely distributed in Gran Chaco, but there is also records for this species in southwest areas of the Cerrado Domain, as far west as the Yungas and into the interior Atlantic Forest of eastern Paraguay (De La Sancha & D’Elía 2015; Teta & Díaz-Nieto 2019). C. agricolai and C. chacoensis share many morphological similarities, there are strong evidence that each species may constitute a species complex, pending a formal revision (Astúa 2015), and they are possibly sympatric in the southwestern portion of Cerrado. Therefore, we did not include in the updated occurrence map (Fig. 5) records of C. agricolai provided by articles that report its occurrence in this area of potential superposition, without providing a detailed morphological description or the diagnosis reasoning (Cáceres et al. 2008; Paise 2010; Martin et al. 2012; Hannibal & Neves-Godoi 2015; Gonçalves et al. 2018). Although delimiting the western limits of C. agricolai is somewhat outside the scope of our work, we emphasize the importance of collecting and accessioning specimens (Patterson 2002), meticulous and comprehensive identifications, as well as descriptions of how species were diagnosed when distribution records are given, especially in areas with possible sympatry of cryptic genus and species.

Fig. 2 Museum skin of Cryptonanus agricolai (UFES-MAM 3075) from Córrego do Veado Biological Reserve, Espírito Santo State, Brazil, in dorsal (top), ventral (middle), and right lateral (bottom) views. Scale = 10 mm (photo: Heitor Bissoli). 

Fig. 3 Dorsal (left), ventral (middle), and lateral (right) views of the cranium of Cryptonanus agricolai from Reserva Biológica do Córrego do Veado, Espírito Santo, Brazil (UFES-MAM 3075). Scale = 10 mm (photos: Heitor Bissoli). 

When the genus was described, authors mentioned that significant range extensions of Cryptonanus could be expected by surveys in extralimital savanna landscapes, specially by pitfall trapping (Voss et al. 2005; Dias et al. 2015). In the Central Atlantic Forest Corridor (Brazil 2006; Câmara & Galindo-Leal 2009), small mammal surveys using pitfall traps are still scarce (Bovendorp et al. 2017), despite their obvious and demonstrated efficiency to trap elusive species (Rocha et al. 2015). Protocols that include this and other alternative kinds of trap methods could contribute largely to fill in many gaps on species distribution, as showed here. The records of C. agricolai presented here expanded the geographic distribution of the species approximately 430 km eastward (UFES-MAM 3075) and 360 km southward (the recognition of MZUSP 35409 as C. agricolai), throughout an area of 324 452 km2 (hatched area; Fig. 5). This corresponds to a 22% of increase in the extent of occurrence previously known for the species and indicates that C. agricolai range is significantly larger, extending over a substantial portion of the Atlantic Forest ecoregion.

Fig. 4 Phylogenetic inference of four species of Cryptonanus based on Bayesian Analysis of 801 bp of mitochondrial Cytochrome b sequences, performed using the TN64 + G model. Values at the nodes refer to Bayesian posterior probabilities. In bold, the specimen reported in the present study (UFES-MAM 3075). Gracilinanus peruanus and Thylamys citellus were used as outgroups. 

Fig. 5 Updated extent of occurrence and range expansion of Cryptonanus agricolai to the Atlantic Forest, according to new records. 

Acknowledgments

We would like to thank Elisandra Chiquito, Roger Guimarães, Noé de la Sancha and another anonymous reviewer for reading and commenting on earlier versions of this manuscript. We also thank, Luciana Conde and Roberta Paresque for fieldwork coordination and support and João Luiz Guedes and Yuri Leite for assisting in molecular analysis. Geovane S. Siqueira kindly provided photos of Mussununga. EBG had no funding while working on this manuscript; LPC has received continuous support from Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq).

REFERENCES

B01 Agrizzi, J., A. C. Loss, A. P. C. Farro, R. Duda, L. P. Costa, & Y. L. R. Leite. 2012. Molecular diagnosis of Atlantic Forest mammals using mitochondrial DNA sequences: didelphid marsupials. The Open Zoology Journal 5:2–9. https://doi.org/10.2174/1874336601205010002Links ]

B02 Antonelli, A., & I. Sanmartín. 2011. Why are there so many plant species in the Neotropics? Taxon 60:403–414. https://doi.org/10.1002/tax.602010Links ]

B03 Astúa, D. 2015. Family Didelphidae. Handbook of the Mammals of the World: 5. Monotremes and Marsupials ( E. Wilson & R.A. Mittermeier eds.). Lynx Edicions, Barcelona. [ Links ]

B04 Beck, J., H. Takano, L. Ballesteros-Mejia, I. J. Kitching, & C. M. Mccain. 2018. Field sampling is biased against small-ranged species of high conservation value: A case study on the Sphingid moths of East Africa. Biodiversity and Conservation 27:3533– 3544. https://doi.org/10.1007/s10531-018-1613-zLinks ]

B05 Bezerra, A. M. R., A. P. Carmignotto, & F. H. G. Rodrigues. 2009. Small non-volant mammals of an ecotone region between the Cerrado hotspot and the Amazonian rainforest, with comments on their taxonomy and distribution. Zoological Studies 48:861– 874. [ Links ]

B06 Bezerra, A. M., A. Lazar, C. R. Bonvicino, & A. S. Cunha. 2014. Subsidies for a poorly known endemic semiarid biome of Brazil: non-volant mammals of an eastern region of Caatinga. Zoological Studies 53:16. https://doi.org/10.1186/1810-522X-53-16Links ]

B07 Bovendorp, R. S., R. A. Mccleery, & M. Galetti. 2017. Optimising sampling methods for small mammal communities in Neotropical rainforests. Mammal Review 47:148–158. https://doi.org/10.1111/mam.12088Links ]

B08 Bonvicino, C.R., S. M. Lindbergh, M. Barros, & A. M. Bezerra. 2012. The eastern boundary of the Brazilian Cerrado: a hotspot region. Zoological Studies 51:1207–1218. [ Links ]

B09 Bradley, R. D., & R. J. Baker. 2001. A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy 82: 960–973. https://doi.org/10.1644/1545-1542(2001)082<0960:ATOTGS>2.0.CO;2 [ Links ]

B10 Brazil. 2006. O corredor central da Mata Atlántica uma nova escala de conservaçao da biodiversidade. Fundaçao SOS Mata Atlántica/ Conservaçao Internacional, São Paulo / Belo Horizonte. [ Links ]

B11 Brito, D. 2004. Lack of adequate taxonomic knowledge may hinder endemic mammal conservation in the Brazilian Atlantic Forest. Biodiversity and Conservation 13:2135–2144. https://doi.org/10.1023/B:BIOC.0000040005.89375.c0Links ]

B12 Buso Junior, A. A. et al. 2019. Paleovegetation and paleoclimate dynamics during the last 7000 years in the Atlantic forest of Southeastern Brazil based on palynology of a waterlogged sandy soil. Review of Palaeobotany and Palynology 264:1–10. https://doi.org/10.1016/j.revpalbo.2019.02.002Links ]

B13 Cámara, I. G., & C. Galindo-Leal. 2009. Mata Atlántica: biodiversidade, ameaças e perspectivas. Fundaçao SOS Mata Atlántica / Conservaçao Internacional, São Paulo / Belo Horizonte. [ Links ]

B14 Carmignotto, A. P., & C. C. Aires. 2011 Mamíferos não voadores (Mammalia) da Estação Ecológica Serra Geral do Tocantins. Biota Neotropical 11:313–328. https://doi.org/10.1590/S1676-06032011000100029Links ]

B15 Carmignotto, A. P., D. Astúa, & N. Cáceres. 2016. Cryptonanus agricolai. The IUCN Red List of Threatened Species 2016: e.T136545A22177735. https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T136545A22177735.enLinks ]

B16 Cáceres, N. C. et al. 2008. Distribuição geográfica de pequenos mamíferos não voadores nas bacias dos rios Araguaia e Paraná, região centro-sul do Brasil. Iheringia: Série Zoologia 98:173–180. https://doi.org/10.1590/S0073-47212008000200001Links ]

B17 Colombi, V., & V. Fagundes. 2015. First record of Calomys cerqueirai (Rodentia: Phyllotini) in Espírito Santo (Brazil) with description of the 2n=36, FNA=66 karyotype. Mammalia 79:479–486. https://doi.org/10.1515/mammalia-2014-0076Links ]

B18 De La Sancha, N., & G. D’Elía. 2015. Additions to the Paraguayan mammal fauna: the first records of two marsupials (Didelphimorphia, Didelphidae) with comments on the alpha taxonomy of Cryptonanus and Philander. Mammalia 79:343–356. https://doi.org/10.1515/mammalia-2013-0176Links ]

B19 Delciellos, A., F. Chiaradia, M. Viana, M. Aguieiras, & D. Gaspar. 2016 First record of genus Cryptonanus (Didelphimorphia) in the state of Rio de Janeiro, Brazil. Check List 12:1827. https://doi.org/10.15560/12.1.1827Links ]

B20 D’Elía, G., & J. A. Martínez. 2006. Registros uruguayos de Gracilinanus Gardner y Creighton, 1989 y Cryptonanus Voss, Lunde y Jansa, 2005 (Didelphimorphia, Didelphidae). Mastozoología neotropical 13:245–249. [ Links ]

B21 Dias, D., C. Fonseca, J. J. Cherem, M. E. Graipel, A. U. Christoff, & R. G. Rocha. 2015. New records of Cryptonanus guahybae (Tate, 1931) in southern Brazil inferred from molecular and morphological data. Mammalia 80:211–219. https://doi.org/10.1515/mammalia-2014-0071Links ]

B22 Díaz, M. M., D. A. Flores, & R. M. Barquez. 2002. A new species of Gracile Mouse Opossum, Genus Gracilinanus (Didelphimorphia: Didelphidae), from Argentina. Journal of Mammalogy 83:824– 833. https://doi.org/10.1644/1545-1542(2002)083%3C0824: ANSOGM%3E2.0.CO;2 [ Links ]

B23 Eisenlohr, P. V., A. T. Oliveira-Filho, & J. Prado. 2015. The Brazilian Atlantic Forest: new findings, challenges and prospects in a shrinking hotspot. Biodiversity and Conservation 24:2129– 2133. https://doi.org/10.1007/s10531-015-0995-4Links ]

B24 Garcia, J. P., J. A. Oliveira, M. M. Correa & L. M. Pessóa. 2010. Morfometría y citogenética de Gracilinanus agilis . Cryptonanus spp. (Didelphimorphia: Didelphidae) del centro y nordeste del Brasil. Mastozoología neotropical 17:53–60. [ Links ]

B25 Gardner, A. L. 2008. Mammals of South America. Volume 1. Marsupials, xenarthrans, shrews, and bats. The University of Chicago Press, Chicago. [ Links ]

B26 Gomes, L. D. P., C. R. Rocha, R. A. Brandao, & J. Marinho- Filho. 2015. Mammal richness and diversity in Serra do Facão region, Southeastern Goiás state, central Brazil. Biota Neotropica 15:e0033. https://doi.org/10.1590/1676-0611-BN-2015-0033. [ Links ]

B27 Gonçalves, F. et al. 2018. Non-volant mammals from the Upper Paraná River Basin: a data set from a critical region for conservation in Brazil. Ecology 99:499. https://doi.org/10.1002/ecy.2107Links ]

B28 Gurgel-Filho, N. M., A. Feijó, & A. Langguth. 2015 Pequenos Mamíferos Do Ceará (Marsupiais, Morcegos E Roedores Sigmodontíneos) Com Discussão Taxonômica de Algumas Espécies. Revista Nordestina de Biologia 23:3–150. [ Links ]

B29 Hannibal, W., & M. Neves-Godoi. 2015. Non-volant mammals of the Maracaju Mountains, southwestern Brazil: composition, richness and conservation. Revista Mexicana de Biodiversidad 86:217–225. https://doi.org/10.7550/rmb.48618Links ]

B30 Heringer, G., J. Thiele, J. A. Meira-Neto, & A. V. Neri. 2019. Biological invasion threatens the sandy-savanna Mussununga ecosystem in the Brazilian Atlantic Forest. Biological Invasions 21:2045–2057. https://doi.org/10.1007/s10530-019-01955-5Links ]

B31 Horbe, A. M. C., M. A. Horbe, & K. Suguio. 2004. Tropical Spodosols in northeastern Amazonas State, Brazil. Geoderma 119:55–68. https://doi.org/10.1016/S0016-7061(03)00233-7Links ]

B32 Hortal, J., F. De Bello, J. A. F. Diniz-Filho, T. M. Lewinsohn, J. M. Lobo, & R. J. Ladle. 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics 46:523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400Links ]

B33 Ibama. 2000. Plano de Manejo da Reserva Biológica Córrego do Veado. Ministério do Meio Ambiente, Brasília, Brasil. [ Links ]

B34 IUCN. 2019. The IUCN Red List of Threatened Species. Version 2019-2. <https://www.iucnredlist.org> [ Links ]

B35 Kumar, S., G. Stecher, M. Li, C. Knyaz, & K. Tamura. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35:1547–1549. https://doi.org/10.1093/molbev/msy096Links ]

B36 Lomolino, M. V. 2004 Conservation biogeography. Frontiers of Biogeography: New Directions in the Geography of Nature (M. V. Lomolino & L. R. Heaney eds.). Sinauer, Sunderland. [ Links ]

B37 Lóss, S., L. P. Costa, & Y. L. R. Leite. 2011. Geographic variation, phylogeny and systematic status of Gracilinanus microtarsus (Mammalia: Didelphimorphia: Didelphidae). Zootaxa 2761:1–33. https://doi.org/10.11646/zootaxa.2761.1.1Links ]

B38 Martin, P. S., C. Gheler-Costa, P. C. Lopes, L. M. Rosalino, & L. M. Verdade. 2012. Terrestrial non-volant small mammals in agro-silvicultural landscapes of Southeastern Brazil. Forest Ecology and Management 282:185–195. https://doi.org/10.1016/j.foreco.2012.07.002Links ]

B39 Mecke, M., C. J. Westman, & H. Ilvesniemmi. 2002. Water retention capacity in coarse podzol profiles predicted from measured soil properties. Soil Science Society of America Journal 66:1–11. https://doi.org/10.2136/sssaj2002.1000Links ]

B40 Meira-Neto, J. A., A. L. Souza, J. M. Lana, & G. E. Valente. 2005. Composição florística, espectro biológico e fitofisionomia da vegetação de muçununga nos Municípios de Caravelas e Mucuri, Bahia. Revista Árvore 29:139–150. https://doi.org/10.1590/S0100-67622005000100015Links ]

B41 Moojen, J. 1943. Alguns mamíferos colecionados no nordeste do Brasil com a descrição de duas espécies novas e notas de campo. Boletim do Museu Nacional do Rio de Janeiro, Nova Série, Zoologia 5:1–14. [ Links ]

B42 Moscal, J. S. 2012. Caracterização socioambiental do entorno da Reserva Biológica do Córrego do Veado no estado do Espírito Santo. Monografia do curso de Especialização em Análise Ambiental não publicada, Departamento de Geografia, Universidade Federal do Paraná, Curitiba. [ Links ]

B43 Paise, G. 2010. Efeitos da fragmentação de habitat sobre a comunidade de pqeuenos mamíferos de Mata Atlântica no estado de São Paulo. Dissertação de Mestrado. Universidade Estadual de Campinas, Campinas, Brasil. [ Links ]

B44 Patterson, B. D. 2002. On the continuing need for scientific collecting of mammals. Mastozoología neotropical 9:253-262. [ Links ]

B45 Patterson, B. D., & L. P. Costa. 2012. Bones, Clones, and Biomes: The history and geography of Recent Neotropical mammals. University of Chicago Press. [ Links ]

B46 Prado, D. E., & P. E. Gibbs. 1993. Patterns of species distributions in the dry seasonal forest of South America. Annals of the Missouri Botanical Garden 80:902–927. [ Links ]

B47 Quintela, F. M., M. B. Santos, A. Gava, & A. U. Christoff. 2011. Notas sobre morfologia, distribuição geográfica, história natural e citogenética de Cryptonanus guahybae (Didelphimorphia: Didelphidae). Mastozoología neotropical 18:247–257. [ Links ]

B48 Rambaut, A., & A. J. Drummond. 2012. "FigTree version 1.4. 0." [ Links ]

B49 Ronquist, F., & J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. [ Links ]

B50 Rocha, R. G. et al. 2015. The usefulness of different methods for biodiversity surveys in the Amazonia/Cerrado ecotone. Natureza OnLine 15:33–45. [ Links ]

B51 Rossi, R., A. P. Carmignotto, M. V. B. Oliveira, C. L. Miranda, & J. Cherem. 2012. Diversidade e diagnose de espécies de marsupiais brasileiros. Os Marsupiais do Brasil: biologia, ecologia e conservação (N. C. Cáceres ed.). Editora UFMS, Campo Grande. [ Links ]

B52 Saporetti-Junior, A. W., C. E. Schaefer, A. L. De Souza, M. P. Soares, D. S. Araújo, & J. A. Meira-Neto. 2012. Influence of soil physical properties on plants of the Mussununga ecosystem, Brazil. Folia Geobotanica 47:29–39. https://doi.org/10.1007/s12224-011-9106-9Links ]

B53 Souza, D. P., P. H. Asfora, T. C. Lira, & D. Astúa. 2010. Small mammals in Barn Owl (Tyto alba - Aves, Strigiformes) pellets from northeastern Brazil, with new records of Gracilinanus and Cryptonanus (Didelphimorphia, Didelphidae). Mammalian Biology 75:370–374. https://doi.org/10.1016/j.mambio.2009.08.003Links ]

B54 Tamura, K., & M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512-526. [ Links ]

B55 Teta, P., & J. F. Díaz-Nieto. 2019. How integrative taxonomy can save a species from extinction: The supposedly extinct mouse opossum Cryptonanus ignitus (Diaz, Flores & Barquez, 2000) is a synonym of the living C. chacoensis (Tate, 1931). Mammalian Biology 96:73–80. https://doi.org/10.1016/j.mambio.2019.04.004Links ]

B56 Tribe, C. J. 1990. Dental age classes in Marmosa incana and other didelphoids. Journal of Mammalogy 71:566–569. https://www.jstor.org/stable/1381795Links ]

B57 Voss, R. S., D. P. Lunde, & S. A. Jansa. 2005. On the contents of Gracilinanus Gardner & Creighton, 1989, with the description of a previously unrecognized clade of small didelphid marsupials. American Museum Novitates 3482:1–36. https://doi.org/10.1206/0003-0082(2005)482[0001:OTCOGG]2.0.CO;2Links ]

B58 Voss, R. S., & S. A. Jansa. 2009. Phylogenetic relationships and classification of didelphid marsupials, and extant radiation of New World metatherian mammals. Bulletin of the American Museum of Natural History 332:1–177. [ Links ]

B59 Whittaker, R. J., M. B. Araújo, J. Paul, R. J. Ladle, J. E. M. Watson, & K. J. Willis. 2005. Conservation biogeography: assessment and prospect. Diversity and Distributions 11:3–23. https://doi.org/10.1111/j.1366-9516.2005.00143.xLinks ]

B60 Xavier, M. S., H. M., Lemos, A., Caccavo, A., Bezerra, H., Secco, & P. R. Gonçalves. 2017. Noteworthy coastal records of the maned wolf, Chrysocyon brachyurus (Illiger, 1815), in Southeastern Brazil. Boletim da Sociedade Brasileira de Mastozoologia 78: 9–13. [ Links ]

Recibido: 20 de Septiembre de 2020; Aprobado: 20 de Enero de 2021