SciELO - Scientific Electronic Library Online

 
vol.25 número1Goblin spiders from India: description of new species of the genera Paramolotra Tong & Li, and Aprusia Simon, and the female of Aprusia kerala Grismado & Deeleman (Araneae: Oonopidae)Concentración de metales de referencia en la estrella de mar Anasterias minuta en el Golfo San Matías, Océano Atlántico índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

Compartir


Revista del Museo Argentino de Ciencias Naturales

versión On-line ISSN 1853-0400

Rev. Mus. Argent. Cienc. Nat. vol.25 no.1 Ciudad Autónoma de Buenos Aires jun. 2023

http://dx.doi.org/10.22179/revmacn.25.801 

ZOOLOGÍA

Reptiles of the Auca Mahuida natural protected area, Argentina

Reptiles del área natural protegida Auca Mahuida, Argentina

María Victoria Brizio1  3  4  * 

Ignacio Minoli2 

Daniel Roberto Pérez1 

Luciano Javier Avila3 

1 Universidad Nacional del Comahue, Facultad de Ciencias del Ambiente y la Salud, LARREA (Laboratorio de Rehabilitación y Restauración de Ecosistemas Áridos y semiáridos), Buenos Aires 1400, 8300, Neuquén, Neuquén, Argentina.

2 Instituto de Biología Subtropical. Universidad Nacional de Misiones - CONICET, Bertoni 85, 3370, Puerto Iguazú, Misiones, Argentina.

3 Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Boulevard Almirante G. Brown 2915, 9120, Puerto Madryn, Chubut, Argentina.

4 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Buenos Aires, Argentina.

Abstract

Reptiles are among the most threatened vertebrates worldwide. Habitat loss and fragmentation, hu man overexploitation, introduced invasive species, emerging diseases, environmental pollution, and global warm ing severely increase the risk of extinction and population decline of this taxon. A key strategy for protecting reptiles’ biodiversity has been the creation and maintenance of protected areas. The focus of this work is on the Auca Mahuida natural protected area (AM), located in northern Patagonia Argentina. Here, we provide a checklist of reptiles’ species found along five years of field surveys made within the AM’ current limits. The effec tiveness of the sampling effort was estimated and extrapolated based on rarefaction curves shown as the sample completeness curve. We recorded within AM’ boundaries a total of 16 species of reptiles, 14 species of lizards, and two species of snakes. In relation to the completeness of our sampling, AM was well-represented in our surveys (0.98 sample coverage). Regarding the results of this work, we can highlight the following reptile species as en demic to the region: Liolaemus crandalli, L. cyaneinotatus, L. sitesi, Phymaturus sitesi, and P. timi, indicating that the AM might indeed be isolated for many species, and that makes these environments vulnerable and vital for conservation.

Keywords: Biogeographic island; Conservation planning; Endemic species; Patagonia; Reptiles’ inventory

Resumen

Los reptiles se encuentran entre los vertebrados más amenazados de todo el mundo. La pérdida y fragmentación del hábitat, la sobreexplot ación humana, la introducción de especies invasoras, las enfermedades emergentes, la contaminación ambiental y el calentamiento global aumentan gravemente el riesgo de extinción y disminución de las poblaciones de este taxón. Una estrategia clave para proteger la biodiversidad de los reptiles ha sido la creación y mantenimiento de áreas protegidas. El foco de este trabajo es el área natural protegida Auca Mahuida (AM), ubicada en el norte de la Patagonia Argentina. Aquí, proporcionamos un inventario de las especies de reptiles encontradas a lo largo de cinco años de estudios de campo realizados dentro de los límites actuales de AM. La eficacia del esfuerzo de mues treo se estimó y extrapoló en función de las curvas de rarefacción que se muestran como la curva de completitud de la muestra. Registramos dentro de los límites de AM un total de 16 especies de reptiles, 14 especies de lagarti jas y dos especies de serpientes. En relación a la completitud de nuestro muestreo, AM estuvo bien representado (cobertura de muestra de 0,98). En cuanto a los resultados de este trabajo, podemos destacar las siguientes espe cies de reptiles como endémicas de la región: Liolaemus crandalli, L. cyaneinotatus, L. sitesi, Phymaturus sitesi y P. timi, lo que indicaría que el AM podría estar aislado para muchas especies, y eso hace que estos ambientes sean vulnerables y vitales para la conservación.

Palabras claves: Isla biogeográfica; Planificación de la conservación; Especies endémicas; Patagonia; Inventario de reptiles

INTRODUCTION

Reptiles are among the most threatened ver tebrates worldwide (Todd et al., 2010; Whittaker et al., 2013). Habitat loss and fragmentation, hu man overexploitation, introduced invasive spe cies, emerging diseases, environmental pollution and global warming, severely increase the risk of extinction and population decline of this taxon (Böhm et al., 2016; Bosch et al., 2007; Sinervo et al., 2010). Habitat loss and fragmentation is con sidered to be the leading cause of reptile declines (Gardner et al., 2007).

A key strategy for protecting reptiles’ bio diversity from declining has been the creation and maintenance of protected areas (Chape et al., 2008; Ervin, 2003). Protected areas have long been regarded as an important tool for maintaining habitat integrity and species diver sity (Brooks et al., 2004; Butchart et al., 2010; Rodrigues et al., 2004), covering more than 14.9 % per cent of the planet’s land surface (UNEP-WCMC et al., 2018).

The success of protected areas has gener ally been evaluated using measures in terms of their species diversity, or coverage of endemic and threatened species (Rodrigues et al., 2004), assuming that protected areas provide effective protection once established (Geldmann et al., 2013). Unfortunately, this is not the case of the Auca Mahuida natural protected area.

Regarding the Auca Mahuida natural pro tected area (AM), we highlight that it is an area of great interest for conservation, because is one of the last ones in the country that hold a large number of guanacos (Lama guanicoeMüller, 1776), and harbor some very interesting plant endemisms (Martínez Carretero, 2004). Additionally, it was worldwide renowned sev eral years ago when palaeontologists discovered a high number of dinosaur nests with embryos inside and outside the protected area (Chiappe & Coria, 2004). On the AM, the activities that produce the greatest habitat fragmentation and biodiversity loss are overgrazing and the activi ties related to oil and gas extraction-production. As a result of the land clearance originated for the exploration and exploitation of oil and gas, by the year 2003 the reserve was divided into 793 fragmented habitats with an area of 1.3 km2 each (Fiori & Zalba, 2003).

Reptiles’ inventories can provide material for analyses of biogeographic and phylogenetic patterns and thus provide essential data for deci sion-making regarding the prioritization of areas for biodiversity conservation (e.g., De Oliveira et al., 2014; França & Venâncio, 2010). Here, we provide a checklist of reptiles’ species found along five years of field surveys made within the AM’ current limits.

MATERIALS AND METHODS

Study Area

The AM is located in the Neuquén Province (Argentina), between 37° 30’ - 38 ° 10’ south lati tude and 68° 30’ - 69 ° 15’ west longitude covering 77,000 hectares. This is a Multiple Use Reserve with provincial jurisdiction. The AM is includ ed in the Southern Volcanic Zone of the Andes (SVZ), with a total length of 1,421 km straight. Topographically, the altitudinal ranges vary from 223 m.a.s.l. until 2,258 m.a.s.l., being the high est peak the Auca Mahuida volcano (Martínez & Kutschker, 2011; Völker et al., 2011; Fig. 1).

Fig. 1 Auca Mahuida natural protected area in Neuquén Province, Argentina. Black dots represent the location sampled for reptiles and white dots represent oil wells and mines. 

The Monte and Patagónica phytogeographi cal provinces converge on the AM, and com bined with the changing altitude of the terrain and through a time scale, formed distinguishable sectors with a particular and characteristic biota. Therefore, the vegetation becomes typical of the southwestern region of the Monte in the lower slopes and of the Patagonian above 1,200 or 1,500 m.s.n.m. (Long, 2000; Oyarzabal et al., 2018). Intense geological processes of the past, including glaciations and great volcanic activity, changed the relief within Patagonian phytogeo graphical province, thus originating the Payunia district with its own characteristics. These pro cesses created particular ecological conditions that might explain the significant number of endemisms and supports the assessment to con sider Payunia as a high valuable biogeographi cal and speciation area (Martínez Carretero, 2004; Oyarzabal et al., 2018). Within the AM, the Patagonian phytogeographical province is repre sented only by the Payunia district.

In the protected area, the average annual rainfall is 140 - 60 mm (Martínez Carretero, 2004). The hydric deficit of this reserve is the highest of the region (600 mm), and the potential evapotranspiration values range from 700 to 750 mm. The winds are intense and can reach speeds of 80 km/h (Morello et al., 2012).

To compose the list of reptiles’ species in the region, we used data from expeditions conducted from 2007 to 2011 and from the material deposit ed in the herpetological collection LJAMM-CNP of the Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET).

Data collection

We conducted 10 expeditions in spring and summer seasons, comprised in 18 days of field work for the following years: 2007 (February 21th), 2008 (March 7th and 28th; September 26th), 2009 (January 23th; November 14th and 15th; December 4th), 2010 (November 9th to 11th; December 14th and 16th), and 2011 (March 5th and 6th; November 25th to 27th). To conduct field ex plorations, we selected spatial sampling points at different altitudes, according to the access possibilities by roads. At each sampling point, a two-person team did transects runs along repre sentative habitats (each one between 1 to 3 km, usually between 8:30 to 20:00 hs, with a combi nation of visual encounter surveys, road raiding and active search methodology depending on type of habitat, season and climatic conditions), representing at least 220 field hours/person. We selected 42 locations within the AM. We photographed wild animals and for locality confirma tion we used voucher specimens deposited in the LJAMM-CNP collection (Table 1). Also, we use information obtained from original description of endemic species and previous works in the AM.

Table 1 Voucher specimens deposited in the LJAMM-CNP collection, each number is the collection number with geographic coordinates and elevation data. 

The effectiveness of the sampling effort was estimated and extrapolated based on rarefaction curves shown as the sample completeness curve, using the R package “iNEXT”. We also used the “iNEXT” package to calculate the effective number of rarefy species for richness (q=0), for Shannon diversity (q=1) and for Simpson diver sity (q=2).

RESULTS

We recorded within AM’ boundaries a total of 16 species of reptiles, 14 species of lizards: Leiosauridae (n=2 spp.), Liolaemidae (n=10 spp.), Phyllodactylidae (n=1 sp.), Teiidae (n=1 sp.), and two species of snakes: Dipsadidae (n=1 sp.) and Viperidae (n=1 sp.; Tab. 1, 2; Fig. 2).

Table 2 Checklist of reptiles with their respective conservation status according to IUCN red list (International Union for Conservation of Nature, 2020): LC (Least Concern), ND (No Data), DD (Data Deficient) and to AHA (Asociación Herpetológica Argentina, 2012): NT (Not Threatened), VU (Vulnerable), ND (No data), IK (Insufficiently Known). 

Fig. 2 Species of reptiles from de Auca Mahuida natural protected area in Neuquén Province, Argentina. A, Liolaemus austromendocinus; B, L. crandalli; C, L. cyaneinotatus; D, L. darwinii; E, L. gracilis; F, L. grosseorum; G, L. mapuche; H, L. sitesi; I, Diplolaemus sexcinctus; J, Leiosaurus bellii; K, Phymaturus timi; L, P. sitesi; M, Homonota darwini darwini; N, Aurivela longicauda; O, Philodryas trilineata; P, Bothrops ammodytoides

Regarding the effectiveness of the sampling effort, the sample completeness curve was close to reach an asymptote (0.98 sample coverage; Fig. 3). The estimated richness showed the pos sible occurrence of 16.5 ± 1.02 species in the area (q=0), indicating that our sample effort was ca pable to detect at least 97 % of the species (n=16). In addition, Shannon (q=1) and Simpson (q=2) diversity index were 12.7 ± 1.01 and 10.6 ± 1.1 respectively.

Fig. 3 Sample completeness curve based on number of individuals of the Auca Mahuida natural protected area. The interpolate curve is represented by a continuous line and the extrapolate curve is represented by a dotted line. 

We could observe that the majority of the species fall under the category of Least Concern (IUCN red list) and Not Threatened (AHA) (Table 2). Only two species fall into the category of Vulnerable (AHA), Phymaturus timiHibbard, Nenda & Lobo, 2019 and P. sitesiAvila, Pérez, Perez & Morando, 2011 (Tab. 1).

DISCUSSION

In relation to the completeness of our sam pling, AM was well represented in our surveys. Inside the limits of the AM, the Payunia distric environments (withing the Patagonian phyto geographical province) are essential for the sub sistence of many species, including the genus Phymaturus, declared vulnerable, and with two species cited for this work. Regarding the results of this work, we can highlight the following rep tile species as endemic to the region: Liolaemus crandalli (Avila et al., 2015), L. cyaneinotatus (Martinez et al., 2011), L. sitesi (Avila et al., 2013), Phymaturus sitesi (Avila et al., 2011) and P. timi (Hibbard et al., 2019), indicating that the AM might indeed be isolated for many species (Hibbard et al., 2019) and that makes these envi ronments vulnerable and vital for conservation.

Reviewing previous bibliography of the Monte province, additional species were absent in our sampling: Amphisbaena angustifrons plumbeaGray, 1872 (Montero, 2016), Liolaemus cuy anusCei & Scolaro, 1980 (Medina et al., 2012), L. goetschiMuller & Hellmich, 1938 (Nori et al., 2010), Erythrolamprus sagittifer, (Jan, 1863) (Cei, 1986), Chelonoidis chilensis (Gray, 1870) (Oriozabala et al., 2017) and Salvator rufescens (Gunther, 1871) (Roig et al., 2009). This may be due to the presence of a hard-to-reach canyon, with no available roads at the south-east por tion of the AM, which comprises almost all of the Monte phytogeographical province. For these reasons, the sampled locations were mostly found in the Patagonian phytogeographical province.

Despite having worked with data whose field collections were carried out more than ten years ago, to date no new field works and conservation measures have been implemented in the protect ed area. On the contrary, the anthropic activities within them have been increasing along with the Argentina’s oil drilling boom.

ACKNOWLEDGEMENTS

We would like to thank C. D. Medina, F. Breitman, M. Kozykariski, P. Escudero, C. Perez, S. Goytia and F. Quiles for their help in field work. We acknowledge Dirección of Áreas Protegidas of Neuquén Province that gran ted us the necessary permits to work in the area. Funding for this project was provided by YPF. The NSF-PIRE award (OISE 0530267) supported collaborative research on Patagonian Biodiversity to the following institutions (listed alphabetically): Brigham Young University (US), Centro Nacional Patagónico (AR), Dalhousie University (CA), Instituto Botánico Darwinion (AR), Universidad Austral de Chile, Universidad de Concepción (CH), Universidad Nacional del Comahue (AR), Universidad Nacional de Córdoba (AR) and University of Nebraska (US). Finally, we thank anonymous reviewers for comments for their constructive comments that improved the manuscript.

REFERENCES

Abdala, C.S. 2002. Nuevo Liolaemus (Iguania: Liolaemidae) perteneciente al grupo Boulengeri de la Provincia de Neuquèn, Argentina. Cuadernos de Herpetología 16(1): 3-13. [ Links ]

Asociación Herpetológica Argentina (AHA). 2012. Categorización de la herpetofauna Argentina. [Online database]. Available at: Available at: http://archivo.aha.org.ar/web/es/categorizacion-de-la-herpetofauna-argentina.html [Accessed: 15 September 2019]. [ Links ]

Avila, L.J., C.H.F. Perez, D.R. Perez & M. Morando. 2011. Two new mountain lizard species of the Phymaturus genus (Squamata: Iguania) from northwestern Patagonia, Argentina. Zootaxa 2924: 1-21. [ Links ]

Avila, L.J., M. Olave, C.H.F. Perez, D.R. Perez & M. Morando. 2013. Molecular phylogenetic relationship of the Liolaemus rothi complex and a new species of lizard from Auca Mahuida Volcano (Squamata: Liolaemini). Zootaxa 3608(4): 221-238. [ Links ]

Avila, L.J., C.D. Medina, C.H.F. Perez, J.W. Sites & M. Morando . 2015. Molecular phylogenetic rela tionship of the lizard clade Liolaemus elongatus (Iguania: Liolaemini) with the description of a new species from an isolated volcanic peak in northern Patagonia. Zootaxa 3947(1): 067-084. [ Links ]

Bell, T. 1843. The zoology of the voyage of H.M.S. Beagle, under the command of Captain Fitzroy, R.N. during the years 1832 to 1836. Edited and superintended by Charles Darwin naturalist to the expedition. Part 5. Reptiles. London, Smith, Elder and Co., 51 pp. [ Links ]

Böhm, M., R. Williams, H.R. Bramhall, K.M. McMillan, A.D. Davidson, A. Garcia, L.M. Bland, J. Bielby & B. Collen. 2016. Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size. Global Ecology and Biogeography 25: 391-405. [ Links ]

Bosch, J., L.M. Carrascal, L. Duran, S. Walker & M.C. Fisher. 2007. Climate change and outbreaks of amphibian chytridiomycosis in a montane area of central. Spain. Proceedings of the Royal Society of London Biological Sciences 274(1607): 253-260. [ Links ]

Boulenger, G.A. 1885. Catalogue of the lizards in the British Museum (Nat. Hist.) I. Geckonidae, Eublepharidae, Uroplatidae, Pygopodidae, Agamidae. London, 450 pp. [ Links ]

Brooks, T.M., M.I. Bakarr, T. Boucher, G.A.B. Da Fonseca, C. Hilton-Taylor, J.M. Hoekstra, T. Moritz, S. Olivieri, J. Parrish, R.L. Pressey, A.S.L. Rodrigues, W. Sechrest, A. Stattersfield, W. Strahm & S.N. Stuart. 2004. Coverage provided by the glob al protected-area system: is it enough?. Bioscience 54: 1081-1091. [ Links ]

Burmeister, H. 1861. Reise durch die La Plata Staaten mit besonderer Rücksicht auf die physis che Beschaffenheit und den Culturzustand der Argentinischen Republik. Ausgeführt in den Jahren 1857, 1858, 1859 und 1860. Halle, H.W. Schmidt, 538 pp. [ Links ]

Butchart, S.H.M., M. Walpole, B. Collen , A. van Strien, J.P.W. Scharlemann, R.E.A. Almond, J.E.M. Baillie, B. Bomhard, C. Brown, J. Bruno, K.E. Carpenter, G.M. Carr, J. Chanson,, A.M. Chenery, J. Csirke, N.C. Davidson, F. Dentener, M. Foster, A. Galli, J.N. Galloway, P. Genovesi, R.D. Gregory, M. Hockings, V. Kapos, J. Lamarque, F. Laverington, J. Loh, M.A. McGeoch, L. McRae, A. Minasyan, M. Hernández Morcillo, T.E.E. Oldfield, D. Pauly, S. Quader, C. Revenga, J.R. Sauer, B. Skolnik, D. Spear, D. Stanwell-Smith, S.N. Stuart, A. Symes, M. Tierney, T.D. Tyrrell, J. Vié. 2010. biodiversity: indicators of recent declines. Science 328: 1164-1168. [ Links ]

Cei, J.M. 1974. Revision of the Patagonian Iguanids of the Liolaemus elongatus complex. Journal of Herpetology 8(3): 219-229. [ Links ]

Cei, J.M. & J.A. Scolaro. 1980. Two new subspecies of the Liolaemus fitzingeri complex from Argentina. Journal of Herpetology 14 (1): 37-43. [ Links ]

Cei, J.M. 1986. Reptiles del centro, centro-oeste y sur de la Argentina. Herpetofauna de las zonas áridas y semiáridas. Bolletino Museo Regionale di Scienze Naturali, Torino, Monografie IV, 527 pp. [ Links ]

Cei, J.M., J.A. Scolaro & F. Videla. 2003. A taxonomic revision of recognized Argentine species of the leiosaurid genus Diplolaemus (Reptilia, Squamata, Leiosauridae). Facena 19: 87-106. [ Links ]

Chape, S., M. Spalding & M. Jenkins. 2008. The World’s Protected Areas: Status, Values and Prospects in the Twenty-First Century. Berkeley, University of California Press, 359 pp. [ Links ]

Chiappe, L.M. & R.A. Coria. 2004. Auca Mahuevo, un extraordinario sitio de nidificación de dinosau rios saurópodos del Cretácico Tardío, Neuquén, Argentina. Ameghiniana 41(4): 591-596. [ Links ]

De Oliveira, D.P., A. Almeida, S. Souza, L. Frazão & T. Hrbek. 2014. Lizards from central Jatapú River, Amazonas, Brazil. Check List 10(1): 46-56. [ Links ]

Duméril, A.M.C. & G. Bibron. 1837. Erpétologie Générale ou Histoire Naturelle Complete des Reptiles. Vol. 4. Libr. Encyclopédique Roret, Paris, 570 pp. [ Links ]

Etheridge, R. 2001. A new species of Liolaemus (Reptilia: Squamata: Tropiduridae) from Mendoza Province, Argentina. Cuadernos de Herpetología 15(1): 3-15 [ Links ]

Ervin, J. 2003. Protected area assessments in perspective. Bioscience 53: 819-822. [ Links ]

Fiori, S.M. & S.M. Zalba. 2003. pe troleum exploration and exploitation on biodiver sity in a Patagonian Nature Reserve, Argentina. Biodiversity and Conservation 12: 1261-1270. [ Links ]

França, F.G.R. & N.M. Venâncio. 2010. Reptiles and amphibians of a poorly known region in southwest Amazonia. Biotemas 23(3): 71-84. [ Links ]

Gardner, T.A., J. Barlow & C.A. Peres. 2007. Paradox, presumption and pitfalls in conservation biology: the importance of habitat change for amphibians and reptiles. Biological Conservation 138: 166-179. [ Links ]

Geldmann, J., M. Barnes, L. Coad, I.D. Craigie, M. Hocking & N.D. Burgess. 2013. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biological Conservation 161: 230-238. [ Links ]

Gray, J.E. 1870. Notice of a new Chilean tortoise (Testudo chilensis). Annals and Magazine of Natural History 6(32): 190. [ Links ]

Gray, J.E. 1872. Catalogue of shield reptiles in the collec tion of the British Museum. Part Il. Emydosaurians, rhynchocephalians, and amphisbaenians. London, 41 pp. [ Links ]

Günther, A. 1871. Description of a new species of Tejus (Tejus rufescens) from Mendoza. Proceedings of the Zoological Society of London 1871: 541-543. [ Links ]

Hibbard, T.N., S.J. Nenda & F. Lobo. 2019. A New Species of Phymaturus (Squamata: Liolaemidae) from the Auca Mahuida Natural Protected Area, Neuquén, Argentina, Based on Morphological and DNA Evidence. South American Journal of Herpetology 14(2): 123-135. [ Links ]

International Union for conservation of Nature (IUCN). 2020. The IUCN Red List of Threatened Species 2020-1. [Online database]. Available at: https://www.iucnredlist.org [Accessed: 2 January 2020]. [ Links ]

Jan, G. 1863. Elenco Sistematico degli Ofidi descriti e disegnati per l’Iconografia Generale. Milano, Tipografia di Lombardi, 143 pp. [ Links ]

Leybold, F. 1873. Excursión a las Pampas argentinas, Hojas de mi diario. Santiago, 108 pp. [ Links ]

Long, M. 2000. Flora Vascular y Vegetación. In: S. Fiori & S.M. Zalba (eds.), Plan de Manejo Reserva Provincial Auca Mahuida (Neuquén). Diagnóstico Regional Vol. I, pp. 35-57. Secretaría de Estado del COPADE y Consejo Federal de Inversiones, Bahía Blanca, Argentina. [ Links ]

Martínez Carretero, E. 2004. La provincia fitogeográfi ca de La Payunia. Boletín de la Sociedad Argentina de Botánica 39(3-4): 195-226. [ Links ]

Martínez, O.A. & A. Kutschker. 2011. The ʻrodados patagónicosʼ (patagonian shingle formation) of eastern Patagonia: Environmental conditions of gravel sedimentation. Biological Journal of the Linnean Society 103: 336-345. [ Links ]

Martinez, L.E., L.J. Avila, C.H.F. Perez , D.R. Perez, J.W. Sites & M. Morando. 2011. A new species of Liolaemus (Squamata, Iguania, Liolaemini) endemic to the Auca Mahuida volcano, nothwestern Patagonia, Argentina. Zootaxa 3010: 31-46. [ Links ]

Medina, C.D., M. Morando , I. Minoli, M.F. Breitman, J.W. Sites & L.J. Avila . 2012. Lagartijas de la pro vincia de Neuquén (Argentina): estado de conser vación, diversidad genética y mapas de distribución geográfica. Informe técnico. [ Links ]

Montero, R. 2016. On the validity of several Argentinian species of Amphisbaena (Squamata, Amphisbaenidae). Journal of Herpetology 50(4): 642-653. [ Links ]

Morello, J., S.D. Matteucci, A.F. Rodriguez & M.E. Silva. 2012. Ecorregiones y complejos ecosistémicos de argentina. Orientación Gráfica Editora, Buenos Aires. 752 pp. [ Links ]

Müller, P.L.S. 1776. Erste Classe, Säugende Thiere. Des Ritters Carl von Linné vollständiges Naturalsystem nach der zwölften Lateinischen Ausgabe 1776(36): 1-62. [ Links ]

Müller, L. & W. Hellmich. 1938. Liolaemus - Arten aus dem westlichen Argentinien. I. Liolaemus darwini und Liolaemus goetschi. Zoologischer Anzeiger 123(5-6): 130-142. [ Links ]

Nori, J., C.S. Abdala & G.J. Scrocchi. 2010. Liolaemus goetschi (Iguania: Liolaemidae): redescription and phylogenetic relationships within the L. boulengeri group. Zootaxa 2440(1): 49-59. [ Links ]

Oriozabala, C., J. Sterli & L.G. Ruiz. 2017. Morphology of the mid-sized tortoises (Testudines: Testudinidae) from the Middle Miocene of Northwestern Chubut (Argentina). Ameghiniana 55(1): 30-55. [ Links ]

Oyarzabal, M., J. Clavijo, L. Oakley, F. Biganzoli, P. Tognetti, I. Barberis, H.M. Maturo, R. Aragón, P.I. Campanello, D. Prado, M. Oesterheld & R.J.C. León. 2018. Unidades de vegetación de la Argentina. Ecología Austral 28: 40-63. [ Links ]

Rodrigues, A.S.L., H.R. Akcakaya, S.J. Andelman, M.I. Bakarr, L. Boitani, T.M. Brooks, J.S. Chanson, L.D.C. Fishpool, G.A.B. Da Fonseca, K.J. Gaston, M. Hoffmann, P.A. Marquet, J.D. Pilgrim, R.L. Pressey , J. Schipper, W. Sechrest, S.N. Stuart, L.G. Underhill, R.W. Waller, M.E.J. Watts & X. Yan. 2004. Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54: 1092-1100. [ Links ]

Roig, F.A., S. Roig-Juñent & V. Corbalán. 2009. Biogeography of the Monte desert. Journal of Arid Environments 73(2): 164-172. [ Links ]

Sinervo, B., F. Méndez de la Cruz, D.B. Miles, B. Heulin, E. Bastiaans, M.V.S. Cruz, R. Lara-Resendiz, N. Martínez-Méndez, M.L. Calderón-Espinosa, R.N. Meza-Lázaro, H. Gadsden, L.J. Avila, M. Morando, I.J. De La Riva, P.V. Sepúlveda, C.F.D. Rocha, N. Ibargüengoytía, C.A. Puntriano, M. Massot, V. Lepetz, T.A. Oksanen, D.G. Chappie, A.M. Bauer, W.R. Branch, J. Clobert & J.W. Sites . 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science 328: 894-899. [ Links ]

Todd, B.D., J.D. Willson & J.W. Gibbons. 2010. The global status of reptiles and causes of their de cline. In: D.W. Sparling, G. Linder, C.A. Bishop & S.K. Krest (eds.), Ecotoxicology of amphibians and reptiles 2nd ed. pp. 47-67. CRC Press, New York, USA. [ Links ]

UNEP-WCMC, IUCN & NGS. 2018. Protected Planet Report 2018. UNEP-WCMC, IUCN and NGS: Cambridge UK; Gland, Switzerland; and Washington, D.C., USA. [ Links ]

Völker, D., S. Kutterolf & H. Wehrmann. 2011. Comparative mass balance of volcanic edifices at the southern volcanic zone of the Andes be tween 33°S and 43°S. Journal of Volcanology and Geothermal Research 205: 114-129. [ Links ]

Whittaker, W., M.S. Koo & D.B. Wake. 2013. Global declines of amphibians. In: S. A. Levin (ed.), Encyclopedia of biodiversity 2nd ed., pp. 691-699. Academic Press, Waltham, pais. [ Links ]

Recibido: 28 de Septiembre de 2022; Aprobado: 10 de Marzo de 2023

* Corresponding author: mvictoria.brizio@gmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License