SciELO - Scientific Electronic Library Online

 
vol.40 número1NÚMEROS DE CURVA DE ESCURRIMIENTO DETERMINADOS PARA UNA MICROCUENCA AFORADA CON SUELOS ARGIUDOLES DE PERMEABILIDAD MODERADAACTIVIDAD MICROBIOLÓGICA GLOBAL COMO INDICADOR DE SALUD EDÁFICA EN MOLISOLES DEL SUDESTE BONAERENSE índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Ciencia del suelo

versão On-line ISSN 1850-2067

Resumo

COLAZO, Juan Cruz  e  BUSCHIAZZO, Daniel Eduardo. ORGANIC CARBON, NITROGEN AND PHOSPHOROUS REMOVAL BY WIND EROSION IN AN ENTIC HAPLUSTOLL. Cienc. suelo [online]. 2022, vol.40, n.1, pp.59-66.  Epub 20-Abr-2023. ISSN 1850-2067.

The knowledge of the dynamics of nutrient loss due to the severity of wind storms may contribute to understand their mechanisms and predict the effect of extreme events expected to increase due to global warming. So, our objective was to quantify the concentration of organic carbon (CO), total nitrogen (NT) and total phosphorus (PT) in the eroded sediment, their relative enrichment ratios and the change in the concentration of these chemical species on the soil surface after wind erosion simulations with a wind tunnel using contrasting speeds and durations. For this, in an Entic Haplustoll we simulated two wind speeds: 10 and 20 m s-1 and two durations: 1 and 3 min. We analysed the horizontal mass flow, the sediment concentration of NT, CO, and PT, the sediment enrichment ratios (RE), and surface concentration changes before and after the simulations. The sediments had a higher concentration of NT in the lowest velocity and of PT in the lowest velocity and longest duration. However, the effect of the speed and duration of the events on the enrichment ratios and the change in surface concentrations before and after the simulations, did not determine a selective removal of CO, NT and PT. Although the enrichment ratios of these chemical species were higher at low speeds, it was observed that at high speeds and short durations, the sediment is depleted in PT (RE<1), with higher concentrations in the soil surface after the events.

Palavras-chave : soil degradation; desertification; nutrient loss; wind tunnel..

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )