SciELO - Scientific Electronic Library Online

 
vol.53 número2Modelación de la mortalidad natural en diferentes densidades de plantación en ensayos dendroenergéticosImplantación de medidas de responsabilidad social corporativa en la horticultura de México y España índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo

versão On-line ISSN 1853-8665

Rev. Fac. Cienc. Agrar., Univ. Nac. Cuyo vol.53 no.2 Mendoza dez. 2021

 

Original article

Root length density (RLD) of oil palm (Elaeis guineensis Jacq) in a haplic Luvisol in Chiapas, Mexico

Densidad de longitud de raíces (DLR) en palma de aceite (Elaeis guineensis Jacq) en un Luvisol de Chiapas, México

José Jesús Obrador-Olán1 

Mepivoseth Castelán-Estrada1 

Alberto Córdova-Sánchez1  * 

Sergio Salgado-García1 

Eustolia García-López1 

Eugenio Carrillo-Ávila2 

1 Colegio de Postgraduados. Campus Tabasco. Periférico Carlos A. Molina s/n. Carr. Cárde nas-Huimanguillo km 3.5. C.P. 86500. H. Cárdenas. Tabasco. México.

2 Colegio de Postgraduados. Campus Campeche. Carretera Federal Haltunchén-Edzna km. 17.5. C.P. 24450. Sihochac. Champotón, Campeche. México.

Abstract

The tight relationship between root architecture and uptake capacity of soil water and minerals, is well established. Support roots, generally long-lived, perform support func tions such as transportation and food storage. Absorbing roots, thin and short-lived, absorb nutrients and regulate plant metabolism. Roots distribution in the soil profile is crucial for plant development. It optimizes resource usage and ensures a prompt response to seasonal changes. This work aimed to study the vertical distribution of the root system of nine-year-old oil palms in a haplic Luvisol, low fertility, moderately acidic, with Nitrogen (N) and Potassium (K) deficiency, average content of Phosphorous (P), and medium to low Cation Exchange Capacity (CEC). Using the cylinder method, soil samples were collected every 10 cm and down to 150 cm of soil depth, from each cardinal side of three soil profiles. The results showed that oil palms had good root development. Most roots (73%) were found in the first 30 cm of soil, with a predominance of fine roots (78%). At 50 cm in depth, fine roots represented 88%, thin roots, 67% and medium roots, 94%. Further study should assess root length density at 15, 20, 25, and 30 years.

Keywords: Fine roots; Number of roots; Soil profile; Absorption of nutrients

Resumen

Existe una relación entre la arquitectura de las raíces (patrones de ramificación y de anclaje) y la captación de recursos hídricos y minerales del suelo: las raíces de soporte, longevas, realizan funciones de apoyo, transporte y almacenamiento de alimentos; las de alimentación, delgadas y de vida corta, aseguran la absorción y el metabolismo de la planta. La distribución de las raíces en el perfil es crucial para el buen desarrollo y la optimización de los recursos disponibles y asegura una pronta respuesta a cambios estacionales. El objetivo fue estudiar la distribución vertical de raíces de palma de aceite de nueve años de edad en un Luvisol háplico de fertilidad baja, pH moderadamente ácido, deficiente de N, con contenido medio de P, muy deficiente de K y CIC baja a media en la profundidad. Mediante el método del cilindro se tomaron muestras de suelo cada 10 cm hasta 150 en cuatro caras de tres perfiles. Los resultados mostraron un buen desarrollo radical de la palma; la mayor cantidad de raíces (73%) se encontró los primeros 30 cm, predominando las raíces finas (78%); en los 50 cm de profundidad se ubicaron: 88% de raíces finas, 67% de delgadas y 94% de medias. Se necesitan más estudios para observar cómo se comporta la densidad de longitud de raíces a los 15, 20, 25 y 30 años de edad de las plantas.

Palabras Clave: Raíces finas; Número de raíces; Perfil edáfico; Absorción de nutrientes

Introduction

Besides being the main nutrient-fixing organ in plants, roots are responsible for soil water and nutrient uptake. Their absorption capacity is directly related to their developmental stage. Branching and penetration are root prime morphological characteristics supporting plant development in moisture deficient soils. A greater or lesser root development determines water absorption rates, and influences important physiological processes such as photosyn thesis, respiration, and cellular elongation, among other metabolic activities 1,12,18.

Roots play a vital role in crop yield. The mentioned water and nutrient uptake directly depends on transport efficiency of root cell plasma membranes, root architecture, nutrient transport regulation, and root growth 14,19. In this sense, Jackson et al. (2008) have recognized the close relationship between root architecture (branching and penetration patterns) and soil water and mineral uptake. They also agree with Jenik et al. (1964), who classified the root system into a) ‘macrorhizae’, including long-lived support roots, which carry out most support, transport, and storage functions; and b) ‘brachyrhizae’ or feeder roots, generally thin, short-lived and carrying out absorption and metabolic functions (rhizosynthesis). Holdaway et al. (2011) argued that roots are denser when subjected to moisture and nutrient restrictions. In agreement, a slightly higher proportion of fine roots was found in sites with low nutrient content and penetration restrictions. It has also been reported that tree root production generally follows aerial growth patterns, tending to stabilize with canopy closing 7,38.

In oil palms (Elaeis guineensis Jacq.), the highest proportion of absorbing roots is located in the superficial horizons, at depths greater than 45 cm 4. Fine roots are generally found between 0 and 20 cm of soil depth, while thin and medium roots are found between 20 and 45 cm. From that depth downwards, the proportion of roots per unit volume of soil decreases sharply 3,6,33. Oil palm root system is characterized by stable and continuous growth. From germination and during the first year, fine roots grow 1 cm day-1. When the plant reaches adulthood (>10 years), fine rooting drops to 0.1 cm day-1(13. Vertical growth patterns of oil palms show a constant direction, conditioned by gravity, whereas horizontal growth shows either upward or downward direction. This is partly determined by emer gence times and environmental conditions such as light, temperature, pH, and oxygen avail ability, among others 14. Subsoil root growth and development may also be affected by mechanical or chemical properties such as acidity and high water table 17,31.

Root activity is based on biomass and root length 26,37, which indirectly reflect plant absorbing capacity 18,33,35. Root length density (RLD), i.e. root length (cm) and diameter (fine, thin, medium) in a specific area, is associated with soil aeration and water/nutrient absorption and transport 28. Root vertical distribution allows quick responses to seasonal changes affecting water and nutrient availability.

Unlike the reasonably well studied production rate of aerial biomass, information on root biomass remains rather limited, mainly due to methodological issues 21. Therefore, the present study aimed to describe vertical distribution of different types of oil palm roots and its association with soil bulk density in a haplic Luvisol soil, a deep and imperfectly drained soil with a short waterlogging period.

Materials and methods

Fieldwork was carried out in a 9 year old commercial oil palm (Elaeis guineensis Jacq.) plantation, with an area of 1-30-00 ha, in the ejido Filadelfia (17°37’10’’ N and 91°55’50’’ W), municipality of Palenque, Chiapas, Mexico. The cultivated genotype was hybrid Deli x Avros. The plantation was established at 9 x 9 m (planted in a triangular pitch arrangement). Mean annual precipitation and temperature are 2500 mm and 27 °C, respectively, and average altitude of 29 meters above sea level 9.

The soil was described and classified after Cuanalo (1990). A 1 kg sample was taken from each horizon for analysis at the Laboratory of Water, Soil and Plants of the Graduate College, Tabasco Campus. The following parameters were determined in all soil samples: organic matter (OM) using Walkley and Black method; pH by water potentiometry (1:2), and texture by Bouyoucos. Ca2+, Mg2+, K+, Na+ were extracted using 1 N ammonium acetate at pH 7.0 and quantified by spectrophotometry. Extractable P was obtained by the Olsen method, and total N by the semi-micro Kjeldahl method. All analyzes were performed as proposed by the Official Mexican Standard (2002). The soil was classified according to the World Reference Base for Soil Resources based on physicochemical analysis results and soil profile descriptions 36.

For root and soil bulk density, three wells were dug to a depth of 1.5 m at representative points of the studied area, in between plants, equidistant from the nearest palms. Samples were taken from each of the four cardinal sides (north-south-east-west) of each soil profile, every 10 cm, using the cylinder method 33. Fifteen 270.5 cm3 samples, were taken from each cardinal side, 60 per profile. Root vertical distribution was observed on these samples.

For each sample, roots were carefully washed, measured (length and diameter) and oven-dried at 70° C to constant weight. Later, they were weighed with precision balance (± 0.0001 g). According to diameter, roots were classified as: fine (<1 mm), thin (1-3 mm) and medium (3-10 mm) 5. Root length density (RLD) was calculated after Moreno et al. (2005):

RLD = Root Length/Soil Volume

where:

root length = expressed in km and soil volume in m3.

Soil samples used to estimate bulk density were dried in a forced circulation oven (Venticell) at 60°C to constant weight, for approximately 72 hours. Estimation was made according to:

DA= Soil weight/soil volume

where:

soil weight = expressed in g and soil volume in cm3.

The resulting data were subjected to ANOVA, multiple mean comparisons (Tukey α= 0.5), and correlation analysis using the SAS statistical package (2004), version 9.1.

Results and discussion

Soil classification and description

The studied soil was a haplic Luvisol (LVha) with a B argic horizon. Sandy, clayey and loamy textured. According to the NOM-021-RECNAT-2000, mildly acidic in the first 30 cm depth and moderately alkaline at 30-60 cm depth (Table 1, page 160).

Table 1: Tabla 1: Physicochemical properties of a Haplic luvisol cultivated with oil palm in Ejido Filadelfia, Palenque, Chiapas, Mexico. Propiedades fisicoquímicas del Luvisol háplico cultivado con palma de aceite en el Ejido Filadelfia, Palenque, Chiapas, México. 

At both depth levels, total N content is low, while P content is medium in the first 30 cm and low in the 30-60 cm level. K shows very low values at both depths. Exchangeable Ca and Mg show medium and high concentrations, respectively, while cation exchange capacity (CIC) is low in the first 30 cm of soil depth, reaching medium level at 30 to 60 cm depth.

Physiographically, Haplic Luvisols are located in flat areas with slightly convex slopes (less than 0.5%). Their parent material corresponds to alluvial sediments influenced by marsh sediments, both from the Pleistocene. They are deep soils with a thin A horizon, loamy-sand textured and dark-brown colored. Imperfectly drained, but with a waterlogging period shorter than that of gleyic Luvisols. In these soils, distance to the water table and humidity regime are more important than low permeability 26. Haplic luvisols found in Savannah of Palenque are usually covered by forests and agricultural lands 26. This region hosts major rubber (Hevea brasiliensis L.) and oil palm (Elaeis guineensis Jacq.) plantations, grazing lands, and, during a certain period each year, watermelon (Citrullus lanatus Thunb.), Haplic luvisols are optimal soils for oil palm cultivation due to their depth (> 150cm), over 50% base saturation, and pH of 5.5-6.6 16. In the present study, deficiencies in primary macronutrients were detected. Other important soil parameters, such as pH and CEC, indi cated that oil palms can grow and develop without toxicity problems and that chemical fertilizers correcting the mentioned deficiencies can be retained in the exchange complex 16,20,30. Soil organic matter was low at the two sampled depths (0-30 and 30-60 cm). Although low organic matter is characteristic of oil palm plantations in the area, this could be a limiting factor, considering the role of OM in soil physical, chemical, and biological fertility. Regarding physical factors, and given soil structure, oil palm roots were not able to fully breathe and grow.

Vertical root distribution

Figure 1 (page 161) shows that root length density (RLD) decreased as soil depth increased. The highest number of oil palm roots (73%) was found in the first 30 cm, with 78% of fine roots, in agreement with Barrios et al. (2003).

Roots: RzF = fine; RzD = thin; RzM = medium.

Raíces: RzF = finas, RzD = delgadas, RzM = medias

Figure 1: Figura 1: Root length density (km m-3) of oil palms cultivated in a haplic Luvisol in Palenque, Mexico. Densidad de longitud de raíces (km m-3) de palma de aceite cultivada en un Luvisol háplico de Palenque, México. 

Although most oil palm roots are found in surface horizons, roots can still be found at depths of up to 1.5-5 m 37.

Fine roots resulted the most abundant through the entire soil profile, evidencing good absorption and metabolic activity 10,37. The largest number (341) of fine roots was found in the first 10 cm, followed by thin roots 11 and medium roots (Figure 2, page 161).

Roots: RzF = fine; RzD = thin; RzM = medium.

Raíces: RzF = finas, RzD = delgadas, RzM = medias.

Figure 2: Figura 2: Distribution of the number of oil palm roots growing in a haplic Luvisol in Palenque, Mexico. Distribución de número de raíces de palma de aceite cultivada en un Luvisol háplico de Palenque, México. 

Table 2 shows comparison of means for RLD, for p ≤ 0.05. In the first 10 cm depth numerous, mainly fine roots were observed.

Table 2: Tabla 2: Root Length Density (RLD km m-3) according to diameter, depth and bulk density in an oil palm plantation on haplic Luvisol, Palenque, Mexico. Densidad de Longitud de Raíces (DLR km m-3) según diámetro, profundidad y densidad aparente en una plantación de palma de aceite cultivada en un Luvisol háplico de Palenque, México. 

N = 12. Different letters within columns indicate significant differences (Tukey α = 0.05).

N = 12. Letras diferentes dentro de columnas indican diferencias significativas (Tukey α = 0,05).

Significant statistical differences in RLD values were found between the first 10 cm and the other depths for each type of roots (fine, thin and medium). As depth increased, RLD values became more homogeneous. These results differ from previous studiesfinding most roots at greater depths, in the first 45 cm 6,33, or deeper 2,23, even for other tree species 18,22,25. Bulk density did not show significant differences among depths (Table 2), nor a relationship with DLR. The African palm, due to its high capacity for radical exploration at high depths, may contribute to high soil bulk density levels through root decomposition 15,29.

Significant differences were found between number of fine (NFR) and thin roots (NTR) in the first 10 cm, and deeper. However, no significant differences in number of medium roots (NMR) (Table 3, page 163) could be observed.

Table 3: Tabla 3: Number of roots (NR) by depth, diameter and bulk density in oil palms grown in a haplic Luvisol soil in Palenque, Mexico. Número de raíces (NR) por profundidad, diámetro y densidad aparente en palma de aceite cultivada sobre un suelo Luvisol háplico de Palenque, México. 

N = 12. Different letters within columns indicate significant differences (Tukey α = 0.05).

N = 12. Letras diferentes dentro de columnas indican diferencias significativas (Tukey α = 0,05).

The first 50 cm of soil depth contained 88% of total fine roots, 67% of total thin roots, and 94% of total medium roots. The number of medium roots decreased between 60 and 140 cm, showing up again at 150 cm.

The results showed that fine roots were distributed throughout the entire soil profile, evidencing high nutrient-absorption and metabolic activities, resulting in good palm oil yields, despite soil limitations. In Indonesia, where this palm is cultivated on millions of hectares, biomass yield is of great importance for carbon capture and degraded soils resto ration 34.

Conclusions

The studied soil was classified as a haplic Luvisol. The highest number of oil palm roots was found in the first 30 cm of soil (73%), most of them being fine roots (78%). The first 50 cm contained 88, 67 and 94% of total fine, thin, and medium roots, respectively. Further study is required to assess the behavior of root length density over the years, for 15, 20, 25 and 30 years old plants.

Acknowledgements

The authors thank the Produce Chiapas Foundation for financing this study.

References

1. Alonso, J. M.; Alvarez, J. A.; Vega Riveros, C.; Pablo, V. 2019. Finite (Hausdorff) dimension of plants and roots as indicator of ontogeny. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 51(2): 142-153. [ Links ]

2. Alvarado, A.; Sterling, F. 1993. Evaluación del patrón de distribución del sistema radical de la palma aceitera (Elaeis guineensis Jacq.). Agronomía Costarricense. 17(1): 41-48. [ Links ]

3. Barrios, R.; Florentino. A. 2001. Evaluación del patrón de humedecimiento de dos suelos subirrigados cultivados con palma de aceitera. Agronomía Tropical. 51(3): 371-386. [ Links ]

4. Barrios, R.; Arteaga, A.; Florentino, A.; Amaya, G. 2003. Evaluación de sistemas de subirrigación y de aspersión en suelos cultivados con palma de aceite. Revista UDO Agrícola. 3(1): 39-46. [ Links ]

5. Cuanalo, C. H. 1990. Manual para la descripción de perfiles de suelo en el campo. 3° ed. Colegio de Postgraduados, Chapingo. México. 40 p. [ Links ]

6. Erhabor, J. O.; Aguimien, A. E.; Filson, G. C. 2002. The root distribution pattern of young oil palm (Elaeis guineensis Jacq.) grown in association with seasoned crops in Southwestern Nigeria. Journal of Sustainable Agriculture 19(3): 97-110. [ Links ]

7. Guerra, C. J.; Gayoso, A. J.; Schlatter, V. J.; Nespolo, R. R. 2005. Análisis de la biomasa de raíces en diferentes tipos de bosques. Avances en la evaluación de Pinus radiata en Chile. Bosque. 26(1): 5-21. [ Links ]

8. Holdaway, R. J.; Richardson, S. J.; Dickie, I. A.; Peltzer, D. A.; Coomes, D. A. 2011. Species-and community level patterns in fine root traits along a 120 000-year soil chrono sequence in temperate rain forest. Journal of Ecology. 99: 954-963. [ Links ]

9. INEGI, 2006. Anuario estadístico de Chiapas. Gobierno del estado de Chiapas. México. p. 46. [ Links ]

10. Jackson, L. E.; Burger, M.; Cavagnaro, T. R. 2008. Roots, nitrogen transformations and ecosystem services. Annu. Rev. Plant Biol. 59: 341-363. [ Links ]

11. Jenik, J.; Sen, D. N. 1964. Morphology of root system in trees: a proposal for terminology. Proccedings of the Tenth International Botanical Congress. Edimburg. p. 393-394. [ Links ]

12. Jiménez, R. C.; Arias, A. D. 2004. Distribución de la biomasa y densidad de raíces finas en una gradiente sucesional de bosques en la Zona Norte de Costa Rica. Kuru: Revista Forestal. 1(2)1-20. [ Links ]

13. Jourdan, C.; Rey, H. 1997. Architecture and development of the oil palm (Elais guineensis Jacq.) root system. Plant and Soil. 189: 33-48. [ Links ]

14. Jourdan, C.; Michau, N.; Perbal, G. 2000. Root system architecture and gravitropism in the oil palm. Annals of Botany. 85: 861-868. [ Links ]

15. Lambers, H.; Chapin, F. S. III.; Pons, T. L. 2008. Plant Physiological Ecology. Springer. New York. p. 604-605. [ Links ]

16. Larez, C. R. 2003. Manual de campo para el cultivo de la palma de aceite (Elaeis guineensis) Traducido por el Fondo para la Investigación en Palma Aceitera (FONINPAL). Parcelamiento el Zamuro, Venezuela. 89 p. [ Links ]

17. Lehmann, J. 2003. Subsoil root activity in tree-based cropping systems. Plant and Soil. 255: 319-331. [ Links ]

18. Lisma, S.; Hermantoro, H.; Sentot, P.; Valensi, K.; Satyanto, K. S.; Agung, K. 2018. Water Footprint and crop water usage of oil palm (Eleasis guineensis) in Central Kalimantan: Environmental sustainability indicators for different crop age and soil conditions. Water. 11(35). doi:10.3390/w11010035 [ Links ]

19. Maeght, J. L.; Rewald, B.; Pierret, A. 2013. How to study deep root and why it matters. Front Plant Sci. 299(4): 1-14. www.frontiersin.org . Acceso: 28 octubre de 2016. [ Links ]

20. Mite, F.; Carrillo M.; Espinoza, J. 2002. Efecto del manejo del cultivo y los fertilizantes en el uso eficiente de nitrógeno en palma de aceite. INPOFOS. p 4. [ Links ]

21. Mokany, K.; Raison, R. J.; Prokushkin, A. S. 2006. Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology. 12: 84-96. [ Links ]

22. Moreno, G.; Obrador, J.; Cubera, E.; Dupraz, C. 2005. Fine root distribution in dehesas of central western Spain. Plant and Soil. 277:153-162. [ Links ]

23. Ng, S. K.; von Uexküll; Härdter, R. 2003. Botanical aspects of the oil palm relevant to crop management. In: Oil Palm Management for Large and Sustainable Yields. Eds T. H. Fairhust and R. Härdter. p. 13-26. International Potash Institute. [ Links ]

24. NOM-021-RECNAT-2000. 2002. Norma Oficial Mexicana. Secretaría de Medio Ambiente, Recursos Naturales y Pesca (SEMARNAT). Diario oficial de la federación. México. 85 p. [ Links ]

25. Oppelt, A. L.; Kurth, G. J.; Godbold, D. L. 2005. Contrasting rooting patterns of some arid-zone fruit tree species from Botswana I. Fine root distribution. Agroforestry Systems. 64: 1-11. [ Links ]

26. Palma, L. D. J.; Cisneros, J. 1997. Clasificación y cartografía de los suelos con aptitud para el cultivo de palma de aceite (Elaeis guineensis Jacq.) en el estado de Tabasco. Fundación Produce. Tabasco. 19 p. [ Links ]

27. Paul, N. N.; Murom, B.; Davis, R. S.; Michael, J. W. 2006. Using soil water depletion to measure spatial distribution of root activity in oil palm (Elaeis guineensis Jacq.) plantations. Plant and Soil. 286: 109-121. [ Links ]

28. Pire, C. R. 1985. Densidad longitudinal de raíces y extracción de humedad en un viñedo de El Tocuyo Venezuela. Agronomía Tropical. 35(1-3): 5-20. [ Links ]

29. Pransisca, Y.; Triadiati, T.; Tjitrosoedirjo, S.; Hertel, D.; Kotowska, M. M. 2016. Forest conversion impacts on the fine and coarse root system, and soil organic matter in tropical lowlands of sumatera (Indonesia). Forest Ecology and Management. 379: 288-298. [ Links ]

30. Raygada, Z. R. 2005. Manual técnico para el cultivo de la palma aceitera. Lima Perú. 109 p. [ Links ]

31. Rivera, M. Y. D.; Moreno, C. A. L.; Mauricio, R. H. 2014. Response of the roots of oil palm O×G interspecific hybrids (Elaeis oleifera ×Elaeis guineensis) to aluminum (Al3+) toxicity. Australian Journal of crop Science (AJCS). 8(11):1526-1533. [ Links ]

32. SAS. 2004. SAS System. Version 9.1. SAS Institute. Inc. Cary. North Carolina. USA. [ Links ]

33. Schroth, G.; Rodriguez, M. R. L.; Angelo, S. A. D. 2000. Spatial pattern of nitrogen mineralization, fertilizer distribution and roots explain nitrate leaching from mature Amazonian oil palm plantation. Soil Use and Management. 16: 222-229. [ Links ]

34. Syahrinudin, 2005. The potential of oil palm and forest plantations for carbon sequestration on degraded land in Indonesia. PhD, Ecology and development series (28). Cuvillier. Gottingen. 107 p. [ Links ]

35. Wahid, P. A. 2001. Radioisotope studies of root activity and root-level interactions in tree-based production systems: a review. Appl. Rad. Isotopos 54. 715-736. [ Links ]

36. WRB. 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. (IUSS Working Group). World Soil Resources Reports. No. 106. FAO. Rome. 196 p. [ Links ]

37. Yazid, I. I.; Abimanyu, D. N.; Supanjani, Z. C.; Riska E. Oil palm roots in response to soil humidity. 2018. International Journal of Oil Palm. 1(2): 79-89. [ Links ]

38. Zuraidah, Y.; Haniff, M. H.; Zulkiflih. 2015. Oil palm roots adaptation under soil compacted by mechanization. International Journal of Agriculture. 5(4): 331-342. [ Links ]

Received: February 29, 2020; Accepted: May 27, 2021

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License