SciELO - Scientific Electronic Library Online

 
vol.58 número3Riqueza de especies y distribución geográfica de la subtribu Hippeastrinae (Amaryllidaceae) en MéxicoEstudios citogenéticos en el complejo poliploide Zephyranthes mesochloa (Amaryllidaceae) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

Compartilhar


Boletín de la Sociedad Argentina de Botánica

versão On-line ISSN 1851-2372

Bol. Soc. Argent. Bot. vol.58 no.3 Córdoba ago. 2023

http://dx.doi.org/10.31055/1851.2372.v58.n3.40046 

Articulos

Classification and phylogeny of Amaryllidaceae, the modern synthesis and the road ahead: a review

Clasificación y filogenia de Amaryllidaceae, la síntesis moderna y el camino por recorrer: una revisión

Alan W. Meerow1 

1 Arizona State University, School of Life Sciences, Tempe, AZ USA, and Montgomery Botanical Center, Coral Gables, FL, USA. *ameerow@asu.edu

Summary

The classification and phylogenetic history of the Amaryllidaceae is reviewed since the dawn of molecular systematics in the 1990's. The family is now recognized as comprising three subfamilies: Agapanthoideae, Allioideae, and Amaryllidoideae, of which the latter is the largest. The family likely had a Gondwanaland origin in what is now Africa. Agapanthoideae is monotypic, endemic to South Africa, and the first branch in the family tree of life; Allioidieae is sister to Amaryllidoideae. Four tribes are recognized in Allioideae: Allieae (monotypic, with nearly 1000 species of Allium across the Northern Hemisphere), Gilliesieae (5-7 genera in southern SouthAmerica), Leucocoryneae (six genera mostly in southern South America), and Tulbaghieae (monotypic, with ca. 30 species endemic to South Africa). Amaryllidoideae is cosmopolitan, but mostly pantropical, consisting of 13 tribes. Centers of diversity occur in South Africa, South America and the Mediterranean region. The American clade is sister to the Eurasian clade (tribes Galantheae, Lycorideae, Narcisseae and Pancratieae) of the subfamily. The American Amaryllidoideae resolves as two monophyletic groups, 1) the hippeastroid clade (tribes Griffineae and Hippeastreae) and 2) the Andean tetraploid clade (tribes Clinantheae, Eucharideae, Eustephieae, and Hymenocallideae). Molecular analyses are reviewed for each main clade of the family, along with the resultant taxonomic changes. Directions for future studies are briefly discussed.

Key words: DNA sequences; geophytes; monocots; systematics; taxonomy

Resumen

La clasificación y la historia filogenética de las Amaryllidaceae se revisa desde el amanecer de la sistemática molecular en la década de 1990. Actualmente, se reconoce que la familia comprende tres subfamilias: Agapanthoideae, Allioideae y Amaryllidoideae, de las cuales la última es la más grande. La familia probablemente se originó en Gondwana, en lo que ahora es África. Agapanthoideae es monotípica, endémica de Sudáfrica y la primera rama del árbol genealógico de la vida de la familia; Allioidieae es hermana de Amaryllidoideae. Se reconocen cuatro tribus en Allioideae: Allieae (monotípica, con casi 1000 especies de Allium en el hemisferio norte), Gilliesieae (5-7 géneros del sur de América del Sur), Leucocoryneae (seis géneros principalmente en el sur de América del Sur) y Tulbaghieae (monotípica, con unas 30 especies endémicas de Sudáfrica). Amaryllidoideae es cosmopolita, pero en su mayoría pantropical, y consta de 13 tribus. Los centros de diversidad se encuentran en Sudáfrica, América del Sur y la región del Mediterráneo. El clado americano es hermano del clado euroasiático (tribus Galantheae, Lycorideae, Narcisseae y Pancratieae) de la subfamilia. Las Amaryllidoideae americanas se resuelven en dos grupos monofiléticos, 1) el clado hippeastroide (tribus Griffineae e Hippeastreae) y 2) el clado tetraploide andino (tribus Clinantheae, Eucharideae, Eustephieae e Hymenocallideae). Se revisan los análisis moleculares para cada clado principal de la familia, junto con los cambios taxonómicos resultantes. Se discuten brevemente las direcciones para futuros estudios.

Palabras clave: Geófitos; monocotiledóneas; sistemática; secuencias de ADN; taxonomía

Introduction

Our understanding of angiosperm phylogeny has undergone a revolution over the past three decades, largely due to two spectacular advances in the science of systematic botany (Judd et al., 2015). With the advent of polymerase chain reaction (PCR) technology (Saiki et al., 1988), direct comparison of the nucleotide sequences of organismal DNA became possible. Secondly, phylogenetic analysis has become the standard methodology for testing hypotheses of phylogeny among organisms in systematic biology (Wiley, 1981; Felsenstein, 2004) based upon principles formally enumerated by Hennig (1966). To the parsimony method (Kitching et al., 1998) has been added both maximum likelihood (Huelsenbeck & Crandall, 1995) and Bayesian analysis (Beaumont, 2010), which have proven valuable in dealing with large DNA sequence datasets.

The precise relationship of Amaryllidaceae J.St.-Hil. to other Asparagales remained elusive until Fay & Chase (1996) used the plastid gene rubisco (rbcL) to argue that Agapanthus L’Hér., Alliaceae Borkh., and Amaryllidaceae form a monophyletic group (also evident in Chase et al., 1995a, b), and that together they are related most closely to Hyacinthaceae Batsch ex Borkh. s.s. and the resurrected family Themidaceae Salisb. (the former tribe Brodiaeeae of Alliaceae), both now classified as subfamilies within a broad circumscription of Asparagaceae Juss. (APG, 2009). They recircumscribed Amaryllidaceae to include Agapanthus, previously included in Alliaceae, as subfamily Agapanthoideae Endl. Subsequent analyses of multiple DNA sequences from both the chloroplast and nuclear genomes have shown quite strongly that Agapanthus, Amaryllidaceae, and Alliaceae represent a distinct lineage within the monocot order Asparagales Link (Meerow et al., 1999; Fay et al., 2000), but the exact relationships among the three groups have been difficult to resolve with finality (Graham et al., 2006); APG II (APG, 2003) recommended treating all three as a single family, Alliaceae (which had nomenclatural priority at that time), and more emphatically in APG III (APG, 2009), but as Amaryllidaceae, reflecting the successful proposal for superconservation of the name (Meerow et al., 2007). Current consensus has Allioideae Herb. and Amaryllidoideae Burnett as sister groups, and Agapanthoideae sister to both (Baker et al., 2022).

Based on the cladistic relationships of chloroplast DNA sequences (Ito et al., 1999; Meerow et al, 1999) all three subfamilies originated in Africa (Gondwanaland) and infrafamilial relationships are resolved along biogeographic lines (Fig. 1). Subfamily Amaryllidoideae, the largest in number of genera, has colonized all continents except Antarctica. Janssen & Bremer (2004) estimated the age of the family at 87 million years before present (MYBP). The only fossil for the family is from early Eocene western North America and was diagnosed as allied to Allioideae (Pigg et al., 2018); contested by Friesen (2022). A leaf fossil from Colombia assigned by Wing et al. (2018) to Amaryllidaceae is at best ambiguous.

Agapanthoideae

The genus Agapanthus (subfamily Agapanthoideae) is restricted to South Africa and consists of six to 10 species of rhizomatous, evergreen or deciduous perennials, most with blue flowers (Snoeijer, 2004). The flowers have superior ovaries, and the genus contains saponins. To date, no molecular studies have been conducted to estimate the species phylogeny of this relatively small genus.

Allioideae

Allioideae is represented in Africa by the South African endemic genus Tulbaghia L., and a single species of Allium L., but is most diverse generically in southern South America (Chile and Argentina). Three tribes were recognized by some (Chase et al., 2009; Escobar et al., 2020): Allieae Dumort., Gilliesieae Baker and Tulbaghieae Endl. ex Meisn. Leucocoryneae Ravenna is now accepted as a fourth distinct tribe (Sassone et al., 2018), of which the first and third consist of only a single genus, Allium and Tulbaghia (the monotypic genus Prototulbaghia Vosa appears nested within Tulbaghia (Stafford et al., 2016)).

The subfamily is characterized by solid styles, superior ovaries and the unique allyl sulfide chemistry that gives many members their characteristic garlic odor. Monotypic Allieae is the largest tribe, entirely due to the speciose genus Allium (Friesen, 2022; Li et al., 2010).

Tulbaghieae

The South African endemic genus Tulbaghia consists of 20-30 species and is badly in need of a thorough taxonomic revision. Vosa (2007) recognized a monotypic segregate genus Prototulbaghia that in a recent molecular study resolved as sister to one subclade of Tulbaghia spp. (Stafford et al., 2016). Vosa (2009) presented a synoptic classification for the genus, distinguishing species groups (sections) primarily on the basis of the morphology of the staminal corona, recognizing 23 species, but Stafford et al. (2016) suggest that there may be as many as 30. Tulbaghieae is endemic to South Africa and is sister to the South American tribes Gilliesieae (Costa et al., 2020; Escobar et al., 2020) and Leucocoryneae (ca. six genera Sassone & Giussani, 2018).

Allieae

Allium contains over 900 species (Herden et al., 2016) and is one of the largest genera of monocots known. More than 50 species are used as edible, medicinal and ornamental crops. Variable morphologically as well as ecologically, it has spread across the Holarctic region, inhabiting dry subtropics to boreal vegetation. Only a single species of Allium occurs outside the Holartic zone, A. synnotia G.Don (syn. A. dregeanum Kunth), native to South Africa (de Wilde-Duyfjes, 1976; de Sarker et al., 1997), though Friesen (2022) suggests that it may have been introduced by early European colonists. An Old World center of diversity encompasses the Mediterranean Basin to Central and Eastern Asia, with a second smaller one in western North America. Friesen (2022), Friesen et al. (2006) and Li et al. (2010) review the infrageneric taxonomic history of this complex genus. Molecular studies have either addressed the phylogenetic relationships of the entire genus (Mes et al., 1997; Dubouzet & Shinoda, 1999; He et al., 2000; Fritsch & Friesen, 2002; Friesen et al., 2006; Li et al., 2010, 2016b; Xie et al., 2020) or specific subgenera and sections Amerallium Traub: Samoylov et al., 1995, 1999; Cyathophora (R.M.Fritsch) R.M.Fritsch: Li et al., 2016a Melanocrommyum (Webb & Berth.) Rouy: Dubouzet & Shinoda, 1998; Mes et al., 1999; Gurushidze et al., 2008, 2010; Fritsch et al., 2010, Rhizirideum (G. Don ex Koch) Wendelbo: Dubouzet et al., 1997, section Cepa (Mill.) Prokh: Gurushidze et al., 2007, origins of A. ampeloprasum L. horticultural races and section Allium: Hirschegger et al., 2010). Other molecular phylogenetic investigations have been concerned with the origins of economically important Allium crops (e.g. Friesen & Klaas, 1998; Friesen et al., 1999; Blattner & Friesen, 2006; Friesen, 2022). Nguyen et al. (2008) examined the phylogeny of the western North American species and their adaptation to serpentine soils.

Friesen et al.'s (2006) analysis of 195 species of Allium using the ITS region of nrDNA presented a new subgeneric classification consisting of 15 monophyletic subgenera, and this is still mostly accepted. Earlier, Friesen et al. (2000) showed that the anomalous Milula Prain with a spicate inflorescence was nested within the Himalayan species of Allium. Nectaroscordum Lindl. and Caloscordum Herb. are also retained within Allium. Li et al. (2010) used ITS sequences along with the intron of the plastid gene rps16 across over 300 Allium taxa and included a biogeographical analysis of the genus. Three major clades are consistently resolved (Fritsch, 2001; Fritsch & Friesen, 2002; Friesen et al., 2006; Li et al., 2010), which Xie et al.'s (2020) whole plastome phylogeny supports as well. Subgenera Amerallium, Anguinum G.Don ex W.D.J.Koch) N.Friesen, Vvedenskya (Kamelin) R.M.Fritsch, Porphyroprason (Ekberg) R.M.Fritsch and Melanocrommyum originated in eastern Asia. The putatively oldest lineage consists of only bulbous plants (subgenera Nectaroscordum, Microscordum (Maxim.) N.Friesen and Amerallium) that only rarely produce a rhizome (Fritsch & Friesen, 2002). The second clade includes subgenera Caloscordum, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum, and the third subgenera Butomissa (Salisb.) N. Friesen, Cyathophora, Rhizirideum, Allium, Cepa, Reticulatobulbosa (Kamelin) N. Friesen and Polyprason Radie. The latter two contain both rhizomatous and bulbous species. The third clade was the most poorly resolved in these analyses and includes a number of non-monophyletic subgenera (Li et al, 2010), but resolution and levels of support were greatly increased with analysis of whole plastomes (Xie et al., 2020). A scenario of rapid radiation was proposed for this clade. The first two clades contain both Old and New World species; almost all of the western North American species are classified in subgenus Amerallium (Nguyen et al., 2008), which has sparingly extended to central and eastern North America. The only other North American species are members of subg. Anguinum (Li et al, 2010; Xie et al., 2020).

Costa et al. (2020) estimated the age of Allioideae as ca. 63 million years and hypothesized that the Indian plate rafted Allieae to the northern hemisphere from which the genus Allium (ca. 52 MYBP) diversified via polyploidy and geographic spread throughout the Northern Hemisphere. Friesen (2022) supported this hypothesis.

Gilliesieae and Leucocoryneae

The tribes Gilliesieae and Leucocoryneae are entirely restricted to the American continents and are most diverse in southern South America, especially Argentina and Chile, and includes such established ornamental bulb crops as Ipheion Raf. and Leucocoryne Lindl. Only one species of Nothoscordum Kunth extends outside of that region, and may be adventive. The sister relationship of these tribes to Tulbaghieae (Fay & Chase, 1996; Fay et al, 2006) suggests an austral entry into South America, perhaps via Antarctica, as has been suggested for many groups showing a similar biogeographic scenario (Raven & Axelrod, 1974). Unfortunately, generic limits within the group remain problematic, with many species having been variously treated as members of diverse genera (Rahn, 1998; Zollner & Amagada, 1998; Rudall et al., 2002; Fay et al., 2006).

The two tribes are immediately separable by the symmetry of the flowers; all Gilliesieae are zygomorphic, and all Leucocoryneae are actinomorphic. The latter also alone possess septal nectaries (Rudall et al, 2002). Both tribes show greater variability in karyotype than either Allium or Tulbaghia (Costa et al., 2020). A combination of plastid and ribosomal DNA sequences robustly supports the two floral morphological clades (Fay et al, 2006; Pellicer et al., 2017; Sassone & Giussani, 2018). Interestingly, the zygomorphic flowers of Gilliesia Lindl. are hypothesized to be insect mimics with a pseudocopulatory pollination syndrome (Rudall et al., 2002).

Escobar et al. (2020) applied ITS and plastid rbcL and trnL-F sequences to explore generic limits in the Gilliesieae. Two major clades were well-supported: Clade I comprises the genera

Gilliesia, Gethyum Phil. and Solaria Phil., and Clade II, Miersia Lindl. and Speea Loes. However, Gilliesia, Gethyum and Miersia were all found to be paraphyletic, resulting in the recognition of the monotypic genus Ancrumia Harv. ex Baker. Schickendantziella Speg. and Trichlora Baker were not represented in the sampling. García et al. (2022a) resolved the same phylogenetic tree, and published two novel species of Miersia.

Sassone and colleagues have studied Leucocoryneae extensively (Sassone & Arroyo-Leuenberger, 2018; Sassone & Giussani, 2018; Sassone et al., 2013; Sassone et al, 2018), and the taxonomic history of the tribe is summarized in Sassone & Giussani (2018).

This tribe consists of six South American genera with ca. 100 species (Sassone et al., 2014a): Beauverdia Herter (four spp., Sassone et al., 2014b), Ipheion (three spp., Sassone et al., 2014a), Latace Phil. (two spp., Sassone et al., 2015), Leucocoryne (15 spp., Muñoz & Moreira, 2000), Nothoscordum (20-80 spp.), and Tristagma Poepp. (12 spp.; Arroyo-Leuenberger & Sassone, 2016). However, both Tristagma and Nothoscordum resolve as biphyletic (Pellicer et al, 2017; Sassone & Giussani, 2018), and Beauverdia, with both white and yellow uniflorous species, is nested within the latter. For this reason, Pellicer et al. (2017) argued that Beauverdia should be placed into synonomy with Nothoscordum. Most recently García et al. (2022b) described a new monotypic genus in the Leucocoryneae, Atacamallium Nic. García, which resolved as sister to the genus Leucocoryne.

Amaryllidoideae

The largest subfamily of Amaryllidaceae in number of genera is Amaryllidoideae (Fig. 1). This subfamily is also economically important, albeit for its large number of ornamental bulbs rather than any food value. It is characterized by an inferior ovary, a unique group of alkaloidal compounds, many with bioactive properties (Meerow & Snijman, 1998; He et al, 2015), and base chromosome number of x = 11 (Meerow & Snijman, 1998).

Tribe Amaryllideae, entirely southern African with the exception of pantropical Crinum L., is sister to the rest of Amaryllidaceae with very high bootstrap support in Meerow et al.'s (1999) analysis of plastid genes (Fig. 1). The remaining two African tribes of the family, Haemantheae Hutch. (including subtr. Gethyllidinae Dumort) and Cyrtantheae Traub (consisting of only Cyrtanthus Ait.), were well supported, but their position relative to the Australasian Calostemmateae D.Müll.-Doblies & U.Müll.Doblies and a large clade comprising the Eurasian and American genera, was not clear. Most surprising, the Eurasian and American elements of the family were each monophyletic sister clades. Ito et al. (1999) resolved a very similar topology for a more limited sampling of Amaryllidaceae and related asparagoids using plastid matK sequences. Plastid ndhF sequences (Meerow & Snijman, 2006) resolved Cyrtantheae as sister to a clade of Calostemmataeae and Haemantheae.

Amaryllideae

Almost all of the generic diversity of the tribe Amaryllideae is confined to South Africa (Snijman & Linder, 1996). Compared to other tribes in Amaryllidaceae, Amaryllideae is marked by a large number of synapomorphies (Snijman & Linder, 1996; Meerow & Snijman, 1998): extensible fibers in the bulb tunics, bisulculate pollen with spinulose exine, scapes with a sclerenchymatous sheath, unitegmic or ategmic ovules, and nondormant, water-rich, nonphytomelaninous seeds with chlorophyllous embryos. A few of the genera extend outside of South Africa proper, but only Crinum, with seeds well suited to oceanic dispersal (Koshimizu, 1930), ranges through Asia, Australia, and America. The tribe is the first branch within the subfamily (Ito et al., 1999; Meerow, 2010; Meerow et al., 2000; Meerow & Snijman, 2006). Snijman and Linder’s (1996) phylogenetic analysis of the tribe based on morphological, floral and seed anatomical, and cytological data resulted in recognition of two monophyletic subtribes: Crininae Baker (Boophone Herb., Crinum, Ammocharis Herb., and Cybistetes Milne-Redh. & Schweick., the latter now transferred to Ammocharis (Snijman & Williamson, 1994) and Amaryllidinae Walp. (Amaryllis L., Nerine Herb., Brunsvigia Heist., Crossyne Salisb., Hessea Herb., Strumaria Jacq., and Carpolyza Salisb. Carpolyza has been transferred to Strumaria (Meerow & Snijman, 2001). Meerow et al.’s (1999) incomplete sampling of this tribe for three plastid sequences resolved Amaryllis as sister to the rest of the tribe. Weichhardt-Kulessa et al. (2000) presented an analysis of internal transcribed spacer (ITS) sequences for a part of the tribe (subtribe

Strumariinae sensu D. & U. Müller-Doblies [1985, 1996]). Meerow & Snijman (2001) analyzed morphology and ITS sequences across the entire tribe. Amaryllis is sister to the remaining genera, followed by Boophone. All other genera were included in two clades conforming to Snijman & Linder’s (1996) subtribes Amaryllidinae (less Amaryllis, thus now Strumariinae) and Crininae (less Boophone), and Carpolyza was transferred into Strumaria (Meerow & Snijman, 2001).

Meerow et al. (2003) presented phylogenetic and biogeographical analyses of nrDNA ITS and plastid trnL-F sequences for all continental groups of the large, pantropical genus Crinum and related genera. Their results indicated that C. baumii Harms is more closely related to Ammocharis than to Crinum sensu stricto (s.s.). Three clades are resolved in Crinum s.s. The first one unites a monophyletic American group with tropical and North African species. Meerow et al. (2003) hypothesized that emergent aquatic tropical African species with actinomorphic perianths were likely the sister group to the American species, which was shown to be the case by Kwembeya et al. (2007). The second clade included all southern African species and the Australian endemic C. flaccidum Herb. The third includes monophyletic Madagascar, Australasian and Sino-Himalayan clades, with southern African species. The salverform, actinomorphic perianths of subg. Crinum appear to have evolved several times in the genus from ancestors with zygomorphic perianths (subg. Codonocrinum Willd. ex Schult.f.), thus neither subgenus is monophyletic. Biogeographical analyses place the origin of Crinum in southern Africa. The genus underwent three major waves of radiation corresponding to the three main clades resolved in the trees. Two entries into Australia of the genus were indicated, as were separate Sino-Himalayan and Australasian dispersal events. These results were confirmed by Kwembeya et al. (2007), including the origin of the endemic American species from tropical west African spp.

Calostemmateae, Cyrtantheae and Haemantheae

The three tribes Calostemmateae, Cyrtantheae and Haemantheae form a clade that is sister to the American and Eurasian tribes of the subfamily (Fig. 1; Meerow et al., 1999; Meerow & Snijman, 2006), though their exact relationships to each other remain ambiguous (Meerow & Snijman, 2006; Bay-Schmidt et al., 2010).

Calostemmateae consists of two Australasian genera (Proiphys Herb., pseudopetiolate forest understory herbs of Malaysia, Indonesia, the Philippines and tropical Australia; and Calostemma R. Br., endemic to Australia). The indehiscent capsules of both genera are similar in appearance to the unripe berry-fruits of Scadoxus Raf. and Haemanthus L. (Haemantheae), but early in the development of the seed, the embryo germinates precociously, and a bulbil forms within the capsule and functions as the mature propagule (Rendle, 1901). A reasonable hypothesis is that the lineage represents an early entry into Australia directly from Africa.

Cyrtantheae consists of a single genus. Cyrtanthus is endemic to sub-Saharan Africa, with well over 90% of its species concentrated in South Africa (Dyer, 1939; Reid & Dyer, 1984). With about 55 species it is the largest genus of southern Africa’s Amaryllidaceae (Snijman & Archer, 2003) and one of the largest in the family overall (Snijman & Meerow, 2010). The genus exhibits a high level of floral morphological diversity which is unparalleled in any other genus of the family. Conversely, the genus shows great consistency in chromosome number, with 2n = 16 characteristic of most, if not all, of the species (Wilsenach, 1963; Ising, 1970; Strydom et al., 2007). It is also the only African genus with the flattened, winged, phytomelaninous seed, so common in the American clade of the family (Meerow & Snijman, 1998). Snijman & Meerow (2010) explored the phylogeny of the genus in the context of floral and ecological adaptation using plastid ndhF and nuclear ribosomal DNA.

Haemantheae is the only group of Amaryllidaceae that have evolved a baccate fruit (Meerow et al., 1999; Meerow & Clayton, 2004). It is entirely African, and like Cyrtanthus, most of its diversity is in South Africa (Meerow & Snijman, 1998). Meerow & Clayton (2004) analyzed plastid trnL-F and nrDNA ITS sequences across the tribe. Two main clades are resolved, one comprising the monophyletic rhizomatous genera Clivia Lindl. and Cryptostephanus Welw. ex Baker, and a larger clade that unites Haemanthus and Scadoxus as sister to an Apodolirion Baker/Gethyllis L. subclade.

The Eurasian clade (Lycorideae, Galantheae, Narcisseae, and Pancratieae)

The Eurasian clade of the Amaryllidaceae (Fig. 1) contains the members of the family that have adapted to the highest latitudes in the Northern Hemisphere, and also those with the greatest economic value as spring flowering temperate zone garden plants (Narcissus L., Galanthus L., Leucojum L.). The clade was only recently recognized as a monophyletic group, resolved as sister to the endemic American genera by plastid DNA sequences (Ito et al, 1999; Meerow et al., 1999). The Eurasian clade encompasses four tribes that were previously recognized (Meerow & Snijman, 1998): Galantheae Parl., Lycorideae Herb., Narcisseae Lam. & DC., and Pancratieae Dumort., the overall relationships of which were obscured by their diversity of chromosome number and morphology (Traub, 1963). Müller-Doblies & Müller-Doblies (1978a) earlier observed similarities between the internal bulb morphology of Ungernia Bunge (Lycorideae) and Sternbergia Waldst. & Kit. (Narcisseae). With the exception of the Central and East Asian Lycorideae, the clade is centered within the Mediterranean region (Meerow & Snijman, 1998; Lledó et al., 2004). There are 11 genera in the clade, comprising ca. 120 spp., with Lycoris Herb. (ca. 20 spp.) and Narcissus L. (40 spp.) the largest genera (Meerow & Snijman, 1998).

Lledó et al. (2004) presented a cladistic analysis of the clade that focused on the relationships of Leucojum and Galanthus using plastid matK, nuclear ribosomal ITS sequences, and morphology. Leucojum was revealed as paraphyletic, and the genus Acis Salisb. was resurrected to accommodate the linear-leaved Mediterranean Leucojum species with solid scapes. While their sampling within these three genera was extensive, only a single species each of the genera Pancratium L., Sternbergia, Narcissus, and Vagaria Herb., along with the monotypic Lapiedra Lag., were used as outgroups. Hannonia Braun-Blanq. & Maire was not included. Consequently, the phylogenetic relationships of the entire clade were not explicitly examined in their analyses. A similar case holds for Graham & Barrett’s (2004) study of floral evolution in Narcissus using plastid ndhF and trnL-F sequences, which included only Lapiedra and one species each of Galanthus, Leucojum, and Sternbergia as outgroups in their analyses.

Meerow et al. (2006) analyzed the clade using plastid ndhF and rDNA ITS sequences for 33 and 29 taxa, respectively; all genera were represented by at least one species. Both sequence matrices resolve the Central and East Asian tribe Lycorideae as sister to the Mediterranean-centered genera of the clade, and two large subclades were recognized within the greater Mediterranean region: Galantheae, consisting of Acis, Galanthus and Leucojum; and Narcisseae (sister genera Narcissus and Sternbergia, and Pancratium). However, there were areas of incongruence between the two markers, which disappeared when three predominantly monotypic genera, Hannonia, Lapiedra, and Vagaria, centered in North Africa, were removed from the alignments. The authors hypothesized that incomplete lineage sorting took place after the divergence of Galantheae and Narcisseae/ Pancratium from a common ancestor, with the three small or monotypic genera retaining a mosaic of the ancestral haplotypes. After the vicariant divergence of the Asian Lycorideae, North Africa and the Iberian Península are the most likely areas of origin for the rest of the clade (Meerow et al, 2006). A new genus, Shoubiaonia W.H.Qin, W.Q.Meng & Kun Liu, was recently described in Lycorideae and is sister to Lycoris and Ungernia (Qin et al., 2021).

Narcissus is the most important genus of temperate zone spring flowering bulbs in the Amaryllidaceae. The genus is taxonomically very complex (Fernandes, 1968a; Webb, 1980; Mathew, 2002), no doubt in part due to its propensity to hybridize in nature (Marques, 2010), and the many horticultural hybrids and selections (Mathew, 2002). Consequently, the number of species varies considerably in different studies. For example, Webb (1980) recognized 26 species; Fernandes (1968a) accepted 63. Blanchard (1990) favored Fernandes’ (1968a) treatment. The genus is most speciose in the Western Mediterranean area, particularly the Iberian Peninsula and NW Africa. This group is also fascinating biologically due to the occurrence of all four major classes of heterostyly, from stylar monomorphism, stigma-height dimorphism, distyly, to tristyly (reviewed in Barrett & Harder, 2005). It is the only heterostylous genus of Amaryllidaceae.

Fernandes (1968a) divided Narcissus into two subgenera, Hermione (Salisb. ex Haw.) Spach with base chromosome number x = 5, and Narcissus with x = 7. He recognized 10 sections (Apodanthae [as Apodanthi] A. Fernandes, Aurelia (J. Gay) Baker, Bulbocodii DC., Ganymedes (Haw.) Schult f., Jonquilla DC., Narcissus, Pseudonarcissus DC., Serotini Parl., Tapeinanthus (Herb.) Traub and Tazettae DC.) based on his decades of karyotypic studies in the genus (summarized in Fernandes, 1967, 1968a, b, 1975). Pérez-Barrales et al., (2003) used the short plastid intergenic spacer between trnL and trnF across a small sampling of Narcissus species and did not get much resolution beyond the two recognized subgenera. Graham & Barrett (2004) provided phylogenetic analyses of the plastid trnL-F and ndhF regions sequenced from 32 Narcissus species representing all 10 sections recognized by Fernandes (1975) and Blanchard (1990). This report strongly supported monophyletic subgenera Hermione and Narcissus, but not of all sections. Only section Apodanthae was clearly monophyletic, but several clades corresponded approximately to recognized sections (Graham & Barrett, 2004). The most robust study is that of Marques et al. (2017) who utilized plastid, mitochondrial and nrDNA (ITS) across a large sampling of species with multiple accessions. She uncovered striking incongruence between trees supported by the cytoplasmic versus the nuclear sequences, which she attributed to widescale hybridization throughout the evolutionary history of the genus. Tests for recombination in the ITS alignments supported this hypothesis. Again, only few of Fernandes’ (1968a) sections were found to be monophyletic. Konyves et al. (2019) concluded much the same in their study of Narcissus section Bulbocodii.

The sister genus to Narcissus is Sternbergia (Meerow et al., 2006), a small genus of ca. eight dwarf white or yellow cup-shaped flowered species, generally appearing in autumn. The scapes are uniflorous. It is distributed around the Mediterranean basin, with diversity and endemism highest from Greece to Israel. Two species flower in spring: S. vernalis (Mill.) Gorer & J.H.Harvey and S. candida B.Mathew. & T.Baytop, the latter the sole white-flowered species. S. lutea (L.) Ker Gawl. ex. Spreng. has been in cultivation for millennia and has naturalized in areas of northern Europe (Mathew, 1983).

Gage et al. (2011) published the most recent phylogeny of the genus and concluded that it forms two main clades: 1) S. colchiciflora Waldst. & Kit. sister to S. vernalis, S. candida and S. clusiana Boiss., and 2) S. lutea and its allies. The two spring flowering species are closely related. In the S. lutea complex, there was insufficient resolution, supporting arguments that S. sicula Tineo ex Guss. and S. greuteriana Kamari & R.Artelari are conspecific with S. lutea.

The relationship between Galanthus and Leucojum sensu lato (s.l.) has long been recognized, as has their relationship to Narcissus and Sternbergia (Müller-Doblies & Müller-Doblies, 1978b; Davis, 1999; 2001). Both genera share pendulous, predominantly white flowers, similar internal bulb morphology and poricidal anthers (Müller-Doblies & Müller-Doblies, 1978b). Unlike Narcissus, both lack a floral tube or a paraperigone (corona). Galanthus is marked by the striking length differences between the inner and outer tepal series, which are only subequal in Leucojum and Acis (Meerow & Snijman, 1998).

Galanthus consists of 18 species, mostly distributed in Europe, Asia Minor and the Near East (Davis, 1999, 2001). Stern (1956) recognized three series in Galanthus, erected primarily by leaf vernation: Nivales Beck (leaves flat), Plicati Beck (leaves plicate) and Latifolii Stern (leaves convolute). Davis (1999) combined series Nivales and Plicati into series Galanthus, and divided series Latifolii into two subseries: Glaucaefolii (Kem.-Nath.) A. P. Davis and Viridifolii (Kem.-Nath.) A.P.Davis. Molecular phylogenetic studies (Lledó et al., 2004; Larsen et al., 2010; Rensted et al., 2013) indicate that the two subseries are not monophyletic.

Leucojum s.l. originally contained 10 species (Stern, 1956), mostly occurring in the western Mediterranean area, from the Atlantic coast of Portugal and Morocco to the northern Balkans and Crimea, but today the genus comprises only two: L. vernum L. and L. aestivum L. (Lledó et al. , 2004; Meerow et al, 2006; Larsen et al., 2010), both broadly distributed in central and northern Europe, Turkey and the Caucasus. Leucojum is characterized by hollow scapes, broad leaves and clavate styles. Both species have a base chromosome number of x = 11. L. vernum, the type of the genus, is widespread in central and northern Europe. Its seeds have a pale outer testa and elaiosomes. L. aestivum is found throughout the Mediterranean and central Europe to Turkey and eastern Caucasus. It differs from L. vernum by its water-dispersed seed with a dark testa and lack of elaiosomes.

The remaining Leucojum species are now classified in the genus Acis, divided into subgenus Acis or Ruminia Parl. (Lledó et al, 2004; Meerow et al., 2006, Larsen et al., 2010), characterized by solid scapes, narrow leaves and filiform styles. The subgenera Acis and Ruminia are differentiated by the morphology of the epigynous staminal disc, six-lobed in A. subgenus Ruminia, and unlobed in A. subgenus Acis. Acis subg. Acis is the larger of the two subgenera with five species.

The American clade

In the American clade, the relationships of the endemic American genera (the entry of Crinum onto the continent is considered a separate event) were well resolved using the spacer regions of nuclear ribosomal DNA (Meerow et al, 2000a), and the major relationships have also been supported by plastid genes and introns (Meerow et al., 1999; 2000b; Meerow & Snijman, 2006; Meerow, 2010). The American genera of the family form two major subclades (Fig. 1). The first, or hippeastroid clade, are diploid (2n = 22), primarily the extra-Andean element of the family (though several of the genera do have Andean representatives), comprising the Brazilian endemic tribe Griffinieae Ravenna (Cearanthes Ravenna, Griffinia Ker Gawl. and Worsleya (Watson ex Traub) Traub) sister to genera treated as tribe Hippeastreae Herb. ex Sweet in most recent classifications (Dahlgren et al. 1985; Muller-Doblies & Muller-Doblies, 1996; Meerow & Snijman, 1998; García et al., 2019). ITS resolved monotypic Worsleya as the first branch in the tribe, and monotypic Cearanthes and Griffinia (16 species) as sister genera (Campos-Rocha et al., 2022b). A monograph of the tribe is underway (Campos-Rocha et al., 2018, 2019a, b).

Several genera within the hippeastroid clade resolved as polyphyletic (Rhodophiala C. Presl., Zephyranthes Herb.) and the possibility of reticulate evolution (i.e., early hybridization) in these lineages was hypothesized (Meerow et al., 2000; Meerow, 2010). This was confirmed with further analyses of plastome and multiple nuclear gene sequences (García et al., 2014, 2017). Hippeastreae constitutes two main clades, the subtribe Hippeastrinae Walp. and the mostly Chilean endemic subtribe Traubiinae D. Müll.-Doblies & U. Müll.-Doblies (García et al, 2014, 2017). In contrast to the Hippeastrinae, the Traubiinae exhibit a mostly tree-like pattern of evolution (García et al., 2017). García et al. (2019) presented a new classification scheme for Hippeastreae that reflects its reticulate phylogeny. Within Hippeastriinae, only two genera are recognized, Hippeastrum Herb. (two subgenera, H. subg. Hippeastrum and H. subg. Tocantinia (Ravenna) Nic.García) and Zephyranthes (five subgenera, Z. subg. Eithea (Ravenna) Nic.García, Z. subg. Habranthus (Herb.) Nic.García, Z. subg. Myostemma (Salisb.) Nic. García (= core Rhodophiala clade), Z. subg. Neorhodophiala Nic.García & Meerow subg. nov., and Z. subg. Zephyranthes). One species, Z. pedunculosa (Herb.) Nic.García & S.C.Arroyo, was designated as incertae sedis.

In the second subtribe, Traubiinae, García et al. (2019) and García & Meerow (2020) recognized four genera, the first two monotypic Traubia Moldenke and Paposoa Nic.García, Phycella Lindl. (including Placea Miers), 12 or more species all but one endemic to Chile, and the alpine Rhodolirium Phil. with two spp., both found in Chile and adjacent Argentina. There has been a great deal of cytogenetic work for the subtribe (Baeza & Macaya, 2020; Baeza et al., 2009a, 2009b, 2012, 2017).

The economically most important genus of American Amaryllidaceae subfam. Amaryllidoideae, Hippeastrum, is still not very well understood taxonomically. Hippeastrum consists of 70-100 entirely New World species, though one species, H. reginae Herb. appears to have been introduced to Africa. No modern revision of the genus has appeared since that of Traub & Moldenke (1949). The species are concentrated in two main areas of diversity, one in eastern Brazil, and the other in the central southern Andes of Peru, Bolivia, and Argentina, on the eastern slopes and adjacent foothills. A few species extend north to Mexico and the West Indies. Meerow et al. (2000a) included seven species in their molecular phylogenetic analysis of the American genera of subfam. Amaryllidoideae, representative of the biogeographic range of the genus. Their results suggested that the genus is robustly monophyletic and originated in Brazil. Campos-Rocha et al. (2022b), using 20 spp., further supported these results. García et al. (2014; 2017), using whole plastomes and multiple nuclear genes on a larger sampling of species, confirmed this. Hippeastrum reticulatum Herb., with unusual fruit and seed morphology was sister to all other species of subg. Hippeastrum, recently displaced by the morphologically unusual H. velloziflorum Campos-Rocha & Meerow (Campos-Rocha et al., 2022b). The low rates of base substitution in both plastid and nrDNA sequences, and the consistent interfertility of species -well-mined by bulb breeders (Meerow, 2009)- suggest that the genus underwent a relatively recent radiation (Oliveira, 2012). Many of the species seem to intergrade with one another. Traub & Moldenke (1949) attempted a formal subgeneric classification of the genus (as Amaryllis) based on floral morphology, but most of their infrageneric taxa do not appear to be monophyletic (Meerow & Snijman, 1998). The newly described H. velloziflorum resolves with ITS as sister to the rest of subgenus Hippeastrum. Lara et al. (2021) presented a revision of the Bolivian species, recognizing 34 native to that country, but there was no attempt to place the taxa into a phylogenetic context. Oliveira (2012) recognized 27 species (now 35) as occurring in Brazil and documented with sequence data and network analysis significant reticulation. New Brazilian species continue to be described (Oliveira et al., 2013, 2017; Campos-Rocha et al., 2022a, 2022b).

The second clade of the American Amaryllidoideae constitutes the tetraploid-derived (x = 23) Andean-centered tribes (Fig. 1). All, or at least some, members of each tribe have 2n = 46 chromosomes. The Andean clade is characterized by three consistent deletions, two in the ITS1 and one in the ITS2 regions (Meerow et al., 2000a), with the exception of Eustephieae Hutch. which lacks the indel in ITS2. The first branch of the clade is the tribe Eustephieae. The tribes Hymenocallideae Small and its sister tribe Clinantheae Meerow were recognized. A petiolate-leafed Andean subclade, containing elements of both Eucharideae Hutch. and Stenomesseae Traub (tribe Eucharideae) was also resolved. Interestingly, in both of the American subclades there is a small but diverse tribe that is sister to the rest of the group, the Eustephieae in the Andean clade, and the Griffinieae in the hippeastroid clade (Fig. 1). These two small tribes likely represent very isolated elements of their respective clades. Meerow (2010) concluded that the genus Pyrolirion Herb. was the first branch of the Eustephieae, rather than allied with Zephyranthes. Most recently, Meerow et al. (2020) performed a phylogenomic analysis of the clade and applied a curated suite of 524 nuclear genes and a partial plastome, which yielded well-supported, fully resolved trees, with much improved species resolution. All of Meerow et al. (2000)’s tribes were robustly supported as were most genera, and their generic composition is as follows: Clinantheae: Clinanthus Herb., Pamianthe Stapf, Paramongaia Velarde); Eucharideae: Eucrosia Ker Gawl., Phaedranassa Herb., Plagiolirion Baker, Rauhia Traub, Stenomesson Herb. and Urceolina Reichb. (including Eucharis Planch. & Lind., Caliphruria Herb. and Eucrosia dodsonii Meerow & Dehgan); Eustephieae: Chlidanthus Herb., Eustephia Cav., Hieronymiella Pax, Pyrolirion); and Hymenocallideae (Hymenocallis Salisb., Ismene Salisb., Leptochiton Sealy).

The Eustephieae, with a southerly bias in distribution, is always resolved as sister to the rest of the clade. The monotypic genus Androstephanos Fern.Casas, placed under synonomy of Hieronymiella argentina (Pax) Hunz. & S.C.Arroyo, appears more closely related to Eustephia with ITS sequences (unpubl. data). Clinantheae and Hymenocallideae are sister tribes, in turn sister to the Eucharideae (Fig. 1).

Unlike the Hippeastreae, the Andean clade does not appear to have experienced much reticulate evolution at the generic level (Meerow et al., 2020), but interspecific hybridization was evident within Hymenocallis especially, and within the rain forest understory subclade of the pseudo-petiolate leafed tribe Eucharideae. As a result, Traub’s (1971) transfer of Eucharis and Caliphruria into Urceolina was accepted (Meerow et al, 2020). Stenomesson is its sister genus. The Peruvian endemic Caliphruria korsakoffii was transferred into Stenomesson, and Eucrosia dodsonii to Urceolina (Meerow et al., 2023).

The Road Ahead

The past quarter century has resulted in the most resolute and accurate understanding of phylogenetic relationships in Amaiyllidaceae to date. However, despite such progress, there are still many questions that remain to be answered. Surprisingly, outside of García et al. (2017) and Meerow et al. (2020), there has been no other application of next generation DNA technology such as sequence capture using anchored hybrid enrichment, also known as Hyb-Seq (Cronn et al, 2012; Lemmon et al, 2012; Lemmon & Lemmon, 2013; Weitemier et al, 2014) applied to the family. Sassone et al. (2021) did apply genotyping by sequencing (GBS) to study the diversification of genus Ipheion in the Pampean region as well as to investigate the domestication history of Iphieon uniflorum (Graham) Raf. (Sassone et al., 2022). Hyb-Seq is clearly the future for developing more robust phylogenetic data sets at the species and generic levels.

There has been interest in whole plastome data recently (Cheng et al., 2022; Dennehy et al., 2021; Jimenez et al., 2020; Xie et al., 2020). Whole plastome sequence data has been applied to recognize new species and estímate phylogeny in Lycoris (Lou et al, 2022; Zhang et al, 2021; Zhang et al., 2022) without any nuclear sequence data for tree comparison. There is frequently sizable cytonuclear discordance between phylogeny estimates from plastome versus nuclear data in the family (Marques et al., 2017; García et al., 2017; Meerow et al, 2020), which can at times signify reticulation. To that end, one must exercise some caution in formalizing taxonomic inferences from plastomes alone, without corresponding trees from the nuclear genome, especially in genera where hybridization has been documented.

Evolutionary development (evo-devo) compares the developmental processes of different organisms to infer how such evolved, using molecular data generally of candidate genes that are integral to developmental pathways (Goodman & Coughlin, 2000) or via transcriptome data (Roux et al., 2015). Very few evo-devo studies have been conducted in Amaryllidaceae (see Waters et al., 2013). Given the degree of canalized and convergent morphological characters in the family (Meerow, 2010), it is an approach that will hopefully see greater application in the future.

A final classification for the genera of tribes Gilliesiae and Leucocoryneae seems within reach, and just requires acceptance of only monophyletic genera, which will then require either taxonomic lumping or splitting.

The large genera Hippeastrum and Zephyranthes would benefit from a next generation sequencing approach combined with whole plastome sequences to unwind the obvious history of hybridization, aneuploidy and polyploidy. In the Andean clade, wider sampling within Eustephieae would be helpful. Among the Eurasian genera, the broadly distributed Pancratium is badly in need of a comprehensive revision as well as a well-sampled molecular phylogeny. New species have recently been described from India (Sasikala & Kumari, 2013; Sadasivaiah, 2018).

Many amaryllids are relatively rare in nature and may not flower every year. New exploration will undoubtedly continue to uncover new species. I look forward to seeing the next generation of systematists working on the family.

Fig. 1: Subfamilial and tribal level phylogeny of the Amaryllidaceae, based on García et al. 2014, 2017, 2019, 2022a), Meerow (2010), Meerow & Snijman (2006), Meerow et al. (1999, 2000a, b, 2006, 2020), and Sassone & Giussani (2018).

Acknowledgements

Fieldwork in South America was supported by USDA, and various National Science Foundation Deirdre Snijman at various times stimulated useful discussions on Amaryllidaceae. I am also grateful to the two reviewers of the manuscript, both of whom helped improve it.

Recibido: 27 Ene 2023

Aceptado: 7 Abr 2023

Publicado en línea: 30 Jul 2023

Publicado impreso: 30 Sep 2023

Bibliography

APG II. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399-436. [ Links ]

https://doi.org/10.1046/j.1095-8339.2003.t01-1-00158.x APG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105-121. https://doi.org/10.1m/j.1095-8339.2009.00996.xLinks ]

BAEZA, C. & J. MACAYA. 2020. Karyotypic analysis of Famatina andina (Phil.) Ravenna (Amaryllidaceae): first record of South American Hippeastreae with secondary centromeric constrictions. Gayana Bot. 77: 59-61. [ Links ]

BAEZA, C. M., C. MARIANGEL, E. RUIZ & M. NEGRITTO. 2009a. El cariotipo fundamental en Rhodolirium speciosum (Herb.) Ravenna y R. andicola (Poepp.) Ravenna (Amaryllidaceae). Gayana Bot. 66: 99-102. [ Links ]

BAEZA, C. M., P. NOVOA, E. RUIZ & M. A. NEGRITTO. 2009b The fundamental karyotype in Traubia modesta (Phil.) Ravenna (Amaryllidaceae). Gayana Bot. 66: 297-300. [ Links ]

BAEZA, C., E. RUIZ, F. ALMENDRAS & P. PENAILILLO. 2012. Comparative karyotype studies in species of Miltinea Ravenna, Phycella Lindl. and Rhodophiala C. Presl (Amaryllidaceae) from Chile. Rev. Facul. Ciencias Agrarias 44: 193-205. [ Links ]

BAEZA, C. M., N. GARCÍA, F. HERRERA, E. RUIZ & M. ROSAS. 2017. Caracterización cromosómica de Rhodolirium laetum (Phil.) Ravenna (Amaryllidaceae) a través de cariotipificación e hibridación in-situ de ADN ribosómico. Gayana Bot. 74: 240-244. [ Links ]

BAKER, W. J., P. BAILEY, V. BARBER, A. BARKER, ... & F. FOREST. 2022. A comprehensive phylogenomic platform for exploring the Angiosperm Tree of Life. Syst. Biol. 71: 301-319. https://doi.org/10.1093/sysbio/syab035 BARRETT, S. C. H. & L. D. HARDER. 2005. The evolution of polymorphic sexual systems in daffodils [ Links ]

(Narcissus). New Phytol. 165: 45-53. https://doi.org/10d m/j.1469-8137.2004.01183.x BAY-SMIDT, M. G. K., A. K. JÁGER, K. KRYDSFELDT, A. W. MEEROW, . & N. [ Links ]

R0NSTED. 2011. Phylogenetic selection of target species in Amaryllidaceae tribe Haemantheae for acetylcholinesterase inhibition and affinity to the serotonin reuptake transport protein. South Afr. J. Bot. 77: 175-183. [ Links ]

https://doi.org/10.1016/j.sajb.2010.07.016 BEAUMONT, M. A. 2010. Approximate Bayesian computation in evolution and ecology. Ann. Rev. Ecol. Evol. Syst. 41: 379-406. https://doi. org/10.1146/annurev-ecolsys-102209-144621 BLANCHARD, J. W. 1990. Narcissus: a guide to wild daffodils. Alpine Garden Society, Surrey. BLATTNER, F. R. & N. FRIESEN. 2006. Relationship between Chinese chive (Allium tuberosum) and its putative progenitor A. ramosum as assessed by random amplified polymorphic DNA (RAPD). In: ZEDER, M. A. et al. (eds.), Documenting domestication: new genetic and archaeological paradigms, pp. 134-142. California University Press, Berkeley. [ Links ]

CAMPOS-ROCHA, A., A. DA SILVA MEDEIROS, A. W. MEEROW, P. ANDRE SANZ-VEGA & J. H. A. DUTILH. 2022a.A remarkable new species of Hippeastrum (Amaryllidaceae) from the Serra da Mantiqueira, Southeastern Brazil. Phytotaxa 571: 197-208. https://doi.org/10.11646/phytotaxa.571.2.6 CAMPOS-ROCHA, A., A. W. MEEROW & D. A. LIMA. 2019a. The rediscovery of Griffinia alba (Amaryllidaceae), a poorly known and endangered species. Brittonia 71: 134-143. https://doi. org/10.1007/s12228-018-9561-1 CAMPOS-ROCHA, A., A. W. MEEROW, E. F. M. LOPES, J. SEMIR, J. L. S. MAYER & J. H. A. DUTILH. 2019b. New and reassessed species of Griffinia (Amaryllidaceae) from the Brazilian Atlantic Forest. Syst. Bot. 44: 310-318. https://doi.org/10.1600/036364419X15562052252199 CAMPOS-ROCHA, A., A. W. MEEROW, R. M. MACHADO, J. L. MAYER, ... & J. H. DUTILH. 2022b. Out of the mud: two new species ofHippeastrum (Amaryllidaceae) from the Doce and Jequitinhonha River basins, Brazil. Pl. Syst. Evol. 308: 1-25. https://doi.org/10.1007/s00606-022-01805-3 CAMPOS-ROCHA, A., J. SEMIR, M. PEIXOTO & J. H. A. DUTILH. 2018. Griffinia meerowiana, a remarkable new species of Amaryllidaceae from [ Links ]

Espirito Santo state, Brazil. Phytotaxa 344: 228-238. https://doi.Org/10.11646/phytotaxa.344.3.3 CHASE, M. W., M. R. DUVALL, H. G. HILLS, J. G. CONRAN, ... & S. HOOT. 1995a. Molecular phylogenetics of Lilianae. In: RUDALL, P. J. et al. (eds.), Monocotyledons: systematics and evolution, vol. 1, pp. 109-137. Royal Botanic Gardens, Kew. CHASE, M. W., M. F. FAY, D. S. DEVEY, O. MAURIN, ... & H. S. RAI. 2006. Multi-gene analyses of monocot relationships: a summary. In: COLUMBUS, J. T. et al. (eds.), Monocots: comparative biology and evolution (vol. 1, excluding Poales), pp. 63-75. Rancho Santa Ana Botanic Garden, Claremont. CHASE, M. W., J. L. REVEAL & M. F. FAY. 2009. A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Bot. J. Linn. Soc. 161: 132-136. https://doi.org/10.im/j.1095-8339.2009.00999.x CHASE, M. W., D. W. STEVENSON, P. WILKIN & P. J. RUDALL. 1995b. Monocot systematics: a combined analysis. In: RUDALL, P. J. et al. (eds.), Monocotyledons: systematics and evolution, vol. 1, pp. 685-730. Royal Botanic Gardens, Kew. [ Links ]

CHENG, R.-Y., D.-F. XIE, X.-Y ZHANG, X. FU, ... & S.-D. ZHOU. 2022. Comparative plastome analysis of three Amaryllidaceae subfamilies: insights into variation of genome characteristics, phylogeny, and adaptive evolution. BioMed Res. Int. 3909596: 1-20. https://doi.org/104155/2022/3909596 COSTA, L., H. JIMENEZ, R. CARVALHO, J. CARVALHO-SOBRINHO, ... & G. SOUZA. 2020. Divide to conquer: evolutionary history of Allioideae tribes (Amaryllidaceae) is linked to distinct trends of karyotype evolution. Front. Pl. Sci. 11: 320. https://doi.org/10.3389/fpls.2020.00320 CRONN, R., B. J. KNAUS, A. LISTON, P. J. MAUGHAN, . & J. UDALL. 2012. Targeted enrichment strategies for next-generation plant biology. Am. J. Bot. 99: 291311. https://doi.org/10.3732/ajb.H00356 DAHLGREN, R. M. T., H. T. CLFFFORD & P F. YEO. 1985. The families of the monocotyledons: structure, evolution and taxonomy. Springer, Berlin. [ Links ]

DAVIS, A. P. 1999. The genus Galanthus: a botanical magazine monograph. Timber Press Portland, Oregon. DAVIS, A. P. 2001. The genus Galanthus - snowdrops in the wild. In: BISHOP, M. et al. (eds.), A monograph of cultivated Galanthus. pp. 9-63. Griffin Press, Cheltenham. [ Links ]

DENNEHY, Z., J. BILSBORROW, A. CULHAM, J. DAVID & K. KONYVES. 2021. The complete [ Links ]

plastome of the South African species, Amaryllis belladonna L. (Amaryllidaceae). Mitochondrial DNA Part B 6: 3393-3395. [ Links ]

https://doi.org/10.1080/23802359.2021.1997121 DUBOUZET, J. G. & K. SHINODA. 1998. Phylogeny of Allium L. subgenus Melanocrommyum (Webb et Berth.) Rouy based on DNA sequence analysis of the internal transcribed spacer region of nrDNA. Theor Appl. Genet. 97: 541-549. https://doi.org/10.1007/s001220050929 DUBOUZET, J. G., K. SHINODA & N. MURATA. 1997. Phylogeny of Allium L. subgenus Rhizirideum (G. Don ex Koch) Wendelbo according to dot blot hybridization with randomly amplified DNA probes. Theor. Appl. Genet. 95: 1223-1228. https://doi.org/10.1007/s001220050685 DYER, R. A. 1939 (published 1940). Description, classification and phylogeny. A review of the genus Cyrtanthus. Herbertia 6: 65-103. [ Links ]

ESCOBAR, I., E. RUIZ-PONCE, P. J. RUDALL, M. F. FAY, . & C. M. BAEZA.2020. Phylogenetic [ Links ]

relationships based on nuclear and plastid DNA sequences reveal recent diversification and discordant patterns of morphological evolution of the Chilean genera of Gilliesieae (Amaryllidaceae: Allioideae). Bot. J. Linn. Soc. 97: 541-549. https://doi.org/10.1007/s001220050929 FAY, M. F. & M. W. CHASE. 1996. Resurrection of Themidaceae for the Brodiaea alliance, and recircumscription of Alliaceae, Amaryllidaceae and Agapanthoideae. Taxon 45: 441-451. https://doi.org/10.2307/1224136 FAY, M. F., P. J. RUDALL & M. W. CHASE. 2006. Molecular studies of subfamily Gilliesioiodeae (Alliaceae). In: COLUMBUS, J. T. et al. (eds.), Monocots: comparative biology and evolution (vol. 1, excluding Poales), pp. 365-375. Rancho Santa Ana Botanic Garden, Claremont. https://doi.org/10.5642/aliso.20062201.30 FAY, M. F., P. J. RUDALL, S. SULLIVAN, K. L. STOBART, . & M. W. CHASE. 2000. Phylogenetic studies of Asparagales based on four plastid DNA loci. In: WILSON, K. L. & D. A. MORRISON (eds.), Monocots-systematics and evolution, vol. 1, pp. 360371. CSIRO Publishing, Collingswood. FELSENSTEIN, J. 2004. Inferring phylogenies. Sinaeuer Associates, Sutherland. [ Links ]

FERNANDES, A. 1967. Contribution á la connaissance de la biosystématique de quelques espéces du genre Narcissus L. Portugaliae Acta Biol., ser. B. Sistem., Ecol., Biog. Paleontol. 9: 1-44. [ Links ]

FERNANDES, A. 1968a. Keys to the identification of native and naturalizaed taxa of the genus Narcissus L. Daffodil Tulip Year Book 1968: 37-66. FERNANDES, A. 1968b. Improvements in the classification of the genus Narcissus L. Pl. Life 24: 51-57. [ Links ]

FERNANDES A. 1975. L’évolution chez le genre Narcissus L. Anales Inst. Bot. A. J. Cavanilles 32: 843-872. [ Links ]

FRIESEN, N. 2022. Introduction to edible alliums: evolution, classification and domestication. In: RABINOWITCH, H. & B. THOMAS (eds.), Edible alliums: botany, production and uses, pp. 1-19. CABI, GB. https://doi.org/10.1079/9781789249996.0001 FRIESEN, N., R. M. FRITSCH, S. POLLNER & F. R. BLATTNER. 2000. Molecular and morphological evidence for an origin of the aberrant genus Milula within Himalayan species of Allium (Alliaceae). Mol. Phylogenet. Evol. 17: 209-218. https://doi.org/10.1006/mpev.2000.0844 FRIESEN, N., R. M. FRITSCH & F. R. BLATTNER. [ Links ]

2006. Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. In: COLUMBUS, J. T. et al. (eds.), Monocots: comparative biology and evolution (vol. 1, excluding Poales), pp. 372-395. Rancho Santa Ana Botanic Garden, Claremont. FRIESEN, N. & M. KLAAS. 1998. Origin of some minor vegetatively propagated Allium crops studied with RAPD and GISH. Genet. Res. Crop Evol. 45: 511-523.https://doi.org/10.1023/A:1008647700251 FRIESEN, N., S. POLLNER, K. BACHMANN & F. R. BLATTNER. 1999. RAPDs and noncoding chloroplast DNA reveal a single origin of the cultivated Allium fistulosum from A. altaicum (Alliaceae). Am. J. Bot. 86: 554-562. https://doi.org/10.2307/2656817 FRITSCH, R. M. 2001. Taxonomy of the genus Allium: contribution from IPK Gatersleben. Herbertia 56: 19-50. [ Links ]

FRITSCH, R. M., F. R. BLATTNER & M. GURUSHIDZE. 2010. New classification of Allium L. subg. Melanocrommyum (Webb & Berthel) Rouy (Alliaceae) based on molecular and morphological characters. Phyton 49: 145-220. [ Links ]

FRITSCH, R. M. & N. FRIESEN. 2002. Evolution, domestication, and taxonomy. In: RABINOWITCH, H. D. & L. CURRAH (eds.), Allium crop science: recent advances, pp. 5-30. CABI Publishing, Wallingford. [ Links ]

GAGE, E., P. WILKIN, M. W. CHASE & J. HAWKINS. [ Links ]

2011. Phylogenetic systematics of Sternbergia (Amaryllidaceae) based on plastid and ITS sequence data. Bot. J. Linn. Soc. 166: 149-162. https://doi.org/104111/j4095-8339.201E0n38.x GARCÍA, N., C. CUEVAS, J. E. SEPÚLVEDA, A. CÁDIZ-VÉLIZ & M. J. ROMÁN. 2022a. Two new species of Miersia and their phylogenetic placements alongside the recently described M. putaendensis (Gilliesieae, Allioideae, Amaryllidaceae). PhytoKeys 211: 107-124. [ Links ]

https://doi.org/10.3897/phytokeys.211.87842 GARCÍA, N., R. A. FOLK., A. W. MEEROW, S. CHAMALA, .... & P. S. SOLTIS. 2017. Deep reticulation and incomplete lineage sorting obscure the diploid phylogeny of rain-lilies and allies (Amaryllidaceae tribe Hippeastreae). Mol. Phylogenet. Evol. 111: 231-247. https://doi.org/10.1016Zj.ympev.2017.04.003 GARCÍA, N., A. W. MEEROW, S. ARROYO-LEUENBERGER, R. S. OLIVEIRA, . & W. [ Links ]

S. JUDD. 2019. Generic classification of Amaryllidaceae tribe Hippeastreae. Taxon 68: 481498. https://doi.org/10.1002/tax.12062 GARCÍA, N. & A. W. MEEROW. 2020. Corrigendum to: GARCÍA, N., A. W. MEEROW, S. ARROYO-LEUENBERGER, R. S. OLIVEIRA, . & W. [ Links ]

S. JUDD. 2019. Generic classification of Amaryllidaceae tribe Hippeastreae [in Taxon 68: 481-498]. Taxon 69: 208-209. https://doi.org/10.1002/tax.12208 GARCÍA, N., A. W. MEEROW, D. E. SOLTIS & P. S. SOLTIS. 2014. Testing deep reticulate evolution in Amaryllidaceae tribe Hippeastreae (Asparagales) with ITS and chloroplast sequence data. Syst. Bot. 39: 75-89. https://doi.org/10.1600/036364414X678099 GARCÍA N., A. B. SASSONE, R. PINTO & M. J. ROMÁN. 2022b. Atacamallium minutiflorum (Amaryllidaceae, Allioideae), new genus and species from the coastal desert of northern Chile. Taxon 71: 552-562. https://doi.org/10.1002/tax.12684 GOODMAN, C. S. & B. C. COUGHLIN, B. C. 2000. Special feature: The evolution of evo-devo biology. Proc. Nat. Acad. Sci. USA 97: 4424-4456. https://doi.org/10.1073/pnas.97.9.4424 GRAHAM, S. W. & S. C. H. BARRETT. 2004. Phylogenetic reconstruction of the evolution of stylar polymorphisms in Narcissus (Amaryllidaceae). Am. J. Bot. 91: 1007-1021. https://doi.org/10.3732/ajb.91.74007 [ Links ]

GRAHAM, S. W., J. M. ZGURSKI, M. A. MCPHERSON, D, M. CHERNIAWSKY, ... & H. S. RAI. 2006. Robust inference of monocot deep phylogeny using an expanded multigene plastid data set. In: COLUMBUS, J. T. et al. (eds.), Monocots: comparative biology and evolution (vol. 1, excluding Poales), pp. 3-21. Rancho Santa Ana Botanic Garden, Claremont. [ Links ]

GURUSHIDZE, M., R. M. FRITSCH & F. R. BLATTNER. 2008. Phylogenetic analysis of Allium subgen. Melanocrommyum infers cryptic species and demands a new sectional classification. Mol. Phylogenet. Evol. 49: 997-1007. https://doi.Org/10.1016/j.ympev.2008.09.003 GURUSHIDZE, M., R. M. FRITSCH & F. R. BLATTNER. 2010. Species level phylogeny of Allium subgenus Melanocrommyum-incomplete lineage sorting, hybridization and trnF gene duplication. Taxon 59: 829-840. https://doi.org/10.1002/tax.593012 GURUSHIDZE, M., S. MASHAYEKHI, F. R. BLATTNER, N. FRIESEN & R. M. FRITSCH. [ Links ]

2007. Phylogenetic relationships of wild and cultivated species of Allium section Cepa inferred by nuclear rDNA ITS sequence analysis. Plant Syst. Evol. 269: 259-269. [ Links ]

https://doi.org/10.1007/s00606-007-0596-0 HE, M., C. QU, O. GAO, X. HU & X. HONG. 2015. Biological and pharmacological activities of amaryllidaceae alkaloids. RSC Adv. 5: 16562. https://doi.org/10.1039/C4RA14666B HE, X. J., S. GE, J. M. XU & D. Y. HONG. 2000. Phylogeny of Chinese Allium (Liliaceae) using PCR-RFLP analysis. Science in China (series C) 43:454-463. [ Links ]

HENNIG, W. 1966. Phylogentic systematics. University of Illinois Press, Urbana. [ Links ]

HERDEN, T., P. HANELT & N. FRIESEN. 2016. Phylogeny of Allium L. subgenus Anguinum (G. Don. ex W.D.J. Koch) N. Friesen (Amaryllidaceae). Mol. Phylogenet. Evol. 95:79-93. https://doi.org/10.1016/j.ympev.2015.n.004 HIRSCHEGGER, P., J. JAKSE, P. TRONTELJ & B. BOHANEC. 2010. Origins of Allium ampeloprasum horticultural groups and a molecular phylogeny of the section Allium (Allium: Alliaceae). Mol. Phylogenet. Evol. 54:488-497. https://doi.org/10.1016/j.ympev.2009.08.030 HUELSENBECK, J. P. & K. A. CRANDALL. 1997. Phylogeny estimation and hypothesis testing using maximum likelihood. Ann. Rev. Ecol. Syst. 28: 437-466. [ Links ]

ISING, G. 1970. Evolution of karyotypes in Cyrtanthus. Hereditas 65: 1-28. [ Links ]

https://doi.org/10.1m/j.1601-5223.1970.tb02305.x ITO, M., A. KAWAMOTO, Y. KITA, T. YUKAWA & S. KURITA. 1999. Phylogenetic relationships of Amaryllidaceae based on matK sequence data. J. Plant Res. 112: 207-216. https://doi.org/10.1007/PL00013874 JANSSEN, T. & K. BREMER. 2004. The age of major monocot groups inferred from 800+ rbcL sequences. Bot. J. Linn. Soc. 146: 385-398. https://doi.org/10.1m/j.1095-8339.2004.00345.x JIMENEZ, H. J., A. D. F. DA SILVA, L. S. S. MARTINS, R. DE CARVALHO & R. M. DE MORAES FILHO. 2020. Comparative genomics plastomes of the Amaryllidaceae family species. Scientia Plena 16: 060202. [ Links ]

https://doi.org/10.14808/sci.plena.2020.060202 JUDD, W. S., C. S. CAMPBELL, E. A. KELLOGG, P. F. STEVENS & D M. J. DONOGHUE. 2015. Plant systematics: a phylogenetic approach, 4th ed. Sinauer Associates, Sutherland. [ Links ]

KITCHING, I. J., P. FOREY, C. HUMPHRIES & D. WILLIAMS. 1998. Cladistics: the theory and practice of parsimony analysis (No. 11). Oxford University Press, Oxford. [ Links ]

KONYVES, K., J. DAVID & A. CULHAM. 2019. Jumping through the hoops: the challenges of daflodil (Narcissus) classification. Bot. J. Linn. Soc. 190: 389404. https://doi.org/10.1093/botlinnean/boz032 KOSHIMIZU, T. 1930. Carpobiological studies of Crinum asiaticum L. var. japonicum Bak. Mem. Coll. Sci, Kyoto Imp. Univ., Ser. B., Biology 5: 183-227. KWEMBEYA, E. G., C. S. BJORÁ, B. STEDJE & I. NORDAL. 2007. Phylogenetic relationships in the genus Crinum (Amaryllidaceae) with emphasis on tropical African species: evidence from trnL-F and nuclear ITS DNA sequence data. Taxon 56: 801-810. https://doi.org/10.2307/25065862 LARA RICO, R. F., R. VÁSQUEZ CHÁVEZ & M. A. BURGOS. 2021. The genus Hippeastrum (Amaryllidaceae) in Bolivia. Pacific Bulb Society, Leonia. [ Links ]

LARSEN, M. M., A. ADSERSEN, A. P. DAVIS, M. D. LLEDÓ, ... & N. R0NSTED. 2010. Using a phylogenetic approach to selection of target plants in drug discovery of acetylcholinesterase inhibiting alkaloids in Amaryllidaceae tribe Galantheae. Biochem. Syst. Ecol. 38: 1026-1034. https://doi.org/10.1016Zj.bse.2010.10.005 [ Links ]

LEMMON, A. R., S. A. EMME & E. M. LEMMON. [ Links ]

2012. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61: 727744. http://doi.org/ 10.1093/sysbio/sys049. LEMMON, E. M. & A. R. LEMMON. 2013. High-throughput genomic data in systematics and phylogenetics. Ann. Rev. Ecol. Evol. Syst. 44: 99-121. https://doi.org/10.1146/annurev-ecolsys-110512-135822 [ Links ]

LI, M. J., J. B.TAN, D. F. XIE, D. Q. HUANG, ... & X. J. HE. 2016a. Revisiting the evolutionary events in Allium subgenus Cyathophora (Amaryllidaceae): insights into the effect of the Hengduan Mountains Región (HMR) uplift and quatemary climatic fluctuations to the environmental changes in the Qinghai-Tibet Plateau. Mol. Phylogenet. Evol. 94: 802-813. https://doi.Org/10.1016/j.ympev.2015.10.002 LI, Q.-Q., S.-D. ZHOU, X.-J. HE, Y. YU, ... & X.-Q. WEI. 2010. Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann. Bot. 106: 709-733. https://doi.org/10.1093/aob/mcq177 LI, Q.-Q., S. D. ZHOU, D. Q. HUANG, X. J. HE & X. Q. WEI. 2016b. Molecular phylogeny, divergence time estimates and historical biogeography within one of the world’s largest monocot genera. AoB Plants 8: plw041. https://doi.org/10.1093/aobpla/plw041. LLEDÓ, M. D., A. P. DAVIS, M. B. CRESPO, M. W. CHASE & M. F. FAY 2004. Phylogenetic analysis of Leucojum and Galanthus (Amaryllidaceae) based on plastid matK and nuclear ribosomal spacer (ITS) DNA sequences and morphology. Plant Syst. Evol. 246: 223-243. [ Links ]

https://doi.org/10.1007/s00606-004-0152-0 LOU, Y-L., D.-K. MA, Z.-T. JIN, H. WANG, ... & B.-B. LIU. 2022. Phylogenomic and morphological evidence reveal a new species of spider lily, Lycoris longifolia (Amaryllidaceae) from China. Phytokeys 210: 79-92. [ Links ]

https://doi.org/10.3897/phytokeys.210.90391 MARQUES, I. C. 2010. Evolutionary outcomes of natural hybridization in Narcissus (Amaryllidaceae): the case of N. x perezlarae s.l. Doctoral dissertation. University of Lisbon, Portugal. [ Links ]

MARQUES, I., J. FUERTES AGUILAR, M. A. MARTINS-LOUQAO, F. MOHARREK & H. N. FELINER. 2017. A three-genome five-gene comprehensive phylogeny of the bulbous genus [ Links ]

Narcissus (Amaryllidaceae) challenges current classifications and reveals multiple hybridization events. Taxon 66: 832-854. https://doi.org/10.12705/664.3 MATHEW, B. 1983. A review of the genus Sternbergia. The Plantsman 5: 1-16. [ Links ]

MATHEW, B. 2002. Classification of the genus Narcissus. In: HANKS, G. R. (ed.), Narcissus and daffodil, pp. 30-52. Taylor and Francis, London. MEEROW, A. W. 2009. Tilting at windmills: 20 years of Hippeastrum breeding. Israel J. Pl. Sci. 57: 303-313. http://doi.org/10.1560/IJPS.57A303 MEEROW, A. W. 2010. Convergence or reticulation? Mosaic evolution in the canalized American Amaryllidaceae. In: SEBERG, O. et al. (eds.), Diversity, phylogeny and evolution in the monocotyledons, pp. 145-168. Aarhus University Press, Aarhus. [ Links ]

MEEROW, A. W. & J. R. CLAYTON. 2004. Generic relationships among the baccate-fruited Amaryllidaceae (tribe Haemantheae) inferred from plastid and nuclear non-coding DNA sequences. Plant Syst. Evol. 244: 141-155. https://doi.org/10.1007/s00606-003-0085-z MEEROW, A. W., M. FAY, M. W. CHASE, C. L. GUY, ... & S.-L. YANG. 2000. Phylogeny of the Amaryllidaceae: molecules and morphology. In: WILSON, K. L. & D. A. MORRISON (eds.), Monocots: systematics and evolution, pp. 368382. CSIRO Publishing, Collingwood. [ Links ]

MEEROW, A. W., M. F. FAY, C. L. GUY, Q.-B. LI, ... & M. W. CHASE. 1999. Systematics of Amaryllidaceae based on cladistic analysis of plastid rbcL and trnL-F sequence data. Am. J. Bot. 86: 1325-1345. https://doi.org/10.2307/2656780 MEEROW, A. W., J. FRANCISCO-ORTEGA, D. N. KUHN & R. J. SCHNELL. 2006. Phylogenetic relationships and biogeography within the Eurasian clade of Amaryllidaceae based on plastid ndhF and nrDNA ITS sequences: lineage sorting in a reticulate area? Syst. Bot. 31: 42-60. https://doi.org/10.1600/036364406775971787 MEEROW, A.W., E. M. GARDNER & K. NAKAMURA. 2020. Phylogenomics ofthe Andean tetraploid clade ofthe American Amaryllidaceae (subfamily Amaryllidoideae): Unlocking a polyploid generic radiation abetted by continental geodynamics. Front. Plant Sci. 11: 582422. https://doi.org/10.3389/fpls.2020.582422 MEEROW, A. W., E. M. GARDNER & K. NAKAMURA. 2023. Corrigendum: Phylogenomics of the Andean [ Links ]

tetraploid clade of the American Amaryllidaceae (subfamily Amaryllidoideae): Unlocking a polyploid generic radiation abetted by continental geodynamics. Front. Plant Sci. 14. https://doi.org/10.3389/fpls.2023.1151864 MEEROW, A. W., C. L. GUY, Q.-B. LI & J. R. CLAYTON. [ Links ]

2002. Phylogeny of the tribe Hymenocallideae (Amaryllidaceae) based on morphology and molecular characters. Ann. Missouri Bot. Gard. 89: 400-413. https://doi.org/10.2307/3298600 [ Links ]

MEEROW, A. W., C. L. GUY, Q.-B. LI & S.-Y. YANG. 2000. Phylogeny of the American Amaryllidaceae based on nrDNA ITS sequences. Syst. Bot. 25: 708726. https://doi.org/10.2307/2666729 MEEROW, A. W., D. J. LEHMILLER & J. R. CLAYTON. [ Links ]

2003. Phylogeny and biogeography of Crinum L. (Amaryllidaceae) inferred from nuclear and limited plastid non-coding DNA sequences. Bot. J. Linn. Soc. 141: 349-363. [ Links ]

https://doi.Org/10.1046/j.1095-8339.2003.00142.x MEEROW, A. W., J. L. REVEAL, D. A. SNIJMAN & J. H. DUTILH. 2007. (1793) Proposal to conserve the name Amaryllidaceae against Alliaceae, a “superconservation” proposal. Taxon 56: 12991300. [ Links ]

MEEROW, A. W. & D. A. SNIJMAN. 1998. Amaryllidaceae. In: KUBITZKI, K. (ed.), The families and genera of vascular plants III. Flowering plants, monocotyledons: Lilianae (except Orchidaceae), pp. 83-110. Springer, Berlin. MEEROW, A. W. & D. A. SNIJMAN. 2001. Phylogeny of Amaryllidaceae tribe Amaryllideae based on nrDNA ITS sequences and morphology. Am. J. Bot. 88: 2321-2330. https://doi.org/10.2307/3558392 MEEROW, A. W. & D. A. SNIJMAN. 2006. The never-ending story: multigene approaches to the phylogeny of Amaryllidaceae, and assessing its familial limits. In: COLUMBUS, J. T. et al. (eds.), Monocots: comparative biology and evolution, vol. 1, pp. 365375. Rancho Santa Ana Botanic Garden, Claremont. https://doi.org/10.5642/aliso.20062201.29 MEEROW, A. W., J. VAN SCHEEPEN & J. H. A. DUTILH. 1997. Transfers from Amaryllis to Hippeastrum. (Amaryllidaceae). Taxon 46: 15-19. https://doi.org/10.2307/1224287 MES, T. H. M., N. FRIESEN, R. M. FRITSCH, M. KLAAS & K. BACHMANN. 1997. Criteria for sampling in Allium based on chloroplast DNA PCR-RFLPs. Syst. Bot. 22: 701-712. https://doi.org/10.2307/2419436 [ Links ]

MES, T. H. M., R. M. FRITSCH, S. POLLNER & K. BACHMANN. 1999. Evolution of the chloroplast genome and polymorphic ITS regions in Allium subgenus Melanocrommyum. Genome 42: 237-247. https://doi.org/10.1139/g98-123 MÜLLER-DOBLIES, D. & U. MÜLLER-DOBLIES. 1978a. Zum Bauplan von Ungernia, der einzigen endemischen Amaryllidaceen - Gattung Zentralasiens. Bot. Jahrb. 99: 249-263. MÜLLER-DOBLIES, D. & U. MÜLLER-DOBLIES. 1978b. Studies on tribal systematics of Amaryllidoideae 1. The systematic position of Lapiedra Lag. Lagascalia 8: 13-23. [ Links ]

NGUYEN, N. H., H. E. DRISCOLL & C. D. SPECHT. [ Links ]

2008. A molecular phylogeny of the wild onions (Allium; Alliaceae) with a focus on the western North American center of diversity. Mol. Phylogenet. Evol. 47: 1157-1172. [ Links ]

https://doi.org/10.1016/j.ympev.2007.12.006 OLIVEIRA, R. 2012. O genero Hippeastrum Herb. (Amaryllidaceae) no Brasil: evidencia de evolujao reticulada e análise de caracteres florais. PhD Thesis. Universidade Estadual de Campinas, Brazil. OLIVEIRA, R. S., J. SEMIR & J. H. A. DUTILH. [ Links ]

2013. Four new endemic species of Hippeastrum (Amaryllidaceae) from Serra da Canastra, Minas Gerais State, Brazil. Phytotaxa 145: 38-46. https://doi.org/10.11646/phytotaxa.145.E4 OLIVEIRA, R. S., J. D. URDAMPILLETA & J. H. DUTILH. 2017. AnewHippeastrum (Amaryllidaceae) species from Brazil. Phytotaxa 307: 147-152. https://doi.org/10.11646/phytotaxa.307.2.6 PELLICER, J., O. HIDALGO, J. WALKER, M. W. CHASE, ... & M. F. FAY. 2017. Genome size dynamics in tribe Gilliesieae (Amaryllidaceae, subfamily Allioideae) in the context ofpolyploidy and unusual incidence of Robertsonian translocations. Bot. J. Linn. Soc. 184: 16-31. https://doi.org/10.1093/botlinnean/box016 PÉREZ-BARRALES, R., P. VARGAS & J. ARROYO. 2003. Convergent evolution of flower polymorphism in Narcissus L. (Amaryllidaceae). New Phytol. 161: 235-252. [ Links ]

https://doi.org/10.1046/j.1469-8137.2003.00955.x PIGG, K. B., F. A. BRYAN & M. L. DEVORE. 2018. Paleoallium billgenseli gen. et sp. nov.: Fossil Monocot Remains from the Latest Early Eocene Republic Flora, Northeastern Washington State, USA. Int. J. Plant Sci. 179: 477-486. https://doi.org/10.1086/697898 [ Links ]

QIN, W. H., W. Q. MENG, D. ZHANG, Y. WANG, ... & K. LIU. 2021. A new Amaryllidaceae genus, Shoubiaonia, from Yunnan Province, China. Nord. J. Bot. 39: e02703. https://doi.org/10.im/njb.02703 RAHN, K. 1998. Alliaceae, Themidaceae. In: KUBITZKI, K. (ed.), The families and genera of vascular plants III. Flowering plants, monocotyledons: Lilianae (except Orchidaceae), pp. 70-78. Springer, Berlin. RAVEN, P. H. & D. I. AXELROD. 1974. Angiosperm biogeography and past continental movements. Ann. Missouri Bot. Gard. 61: 539-673. https://doi.org/10.2307/2395021 REID, C. & R. A. DYER. 1984. A Review of the southern African species of Cyrtanthus. American Plant Life Society, La Jolla. [ Links ]

RENDLE, A. B. 1901. The bulbiform seeds of certain Amaryllidaceae. J. Roy. Hort. Soc. 26: 89-96. R0NSTED, N., D. ZUBOV, S. BRUUN-LUND & A. P. DAVIS. 2013. Snowdrops falling slowly into place: An improved phylogeny for Galanthus (Amaryllidaceae). Mol. Phylogenet. Evol. 69: 205217. [ Links ]

https://doi.Org/10.1016/j.ympev.2013.05.019 ROUX, J., M. ROSIKIEWICZ & M. ROBINSON-RECHAVI. 2015. What to compare and how: comparative transcriptomics for evo-devo. J. Exp. Zool. Part B: Mol. & Develop. Evol. 324: 372-382. https://doi.org/10.1002/jez.bZ22618 RUDALL, P. J., R. M. BATEMAN, M. F. FAY & A. EASTMAN. 2002. Floral anatomy and systematics of Alliaceae with particular reference to Gilliesia, a presumed insect mimic with strongly zygomorphic flowers. Am. J. Bot. 89: 1867-1883. https://doi.org/10.3732/ajb.89.12.1867 SAIKI, R. K., D. H. GELFAND, S. STOFFEL, S. J. SCHARF, ... & H. A. ERLICH. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487491. https://doi.org/10.1126/science.2448875 SAMOYLOV, A., N. FRIESEN, S. POLLNER & P HANELT. 1999. Use of chloroplast DNA polymorphisms for the phylogenetic study of Allium subgenus Amerallium and subgenus Bromatorrhiza (Alliaceae) II. Fed. Rep. 110: 103-109. https://doi. org/10.1002/fedr. 19991100118 SAMOYLOV, A., M. KLAAS & P. HANELT. 1995. Use of chloroplast polymorphisms for the phylogenetic study of subgenera Amerallium and Bromatorrhiza (genus Allium). Fed. Rep. 106: 161-167. https://doi.org/10.1002/fedr. 19951060306 [ Links ]

SADASIVAIAH, B. K. & S. KARUPPUSAMY. 2018. Two new species of Pancratium (Amaryllidaceae) from India. Species 19: 132-139. [ Links ]

SASIKALA, K. & M. KUMARI. 2013. Pancratium nairii (Amaryllidaceae)-a new species from Kerala, India. Indian J. For. 36: 543-544. [ Links ]

SARKER, D. DE, M. A. T. JOHNSON, A. REYNOLDS & P E. BRANDHAM. 1997. Cytology of the highly polyploid disjunct species, Allium dregeanum (Alliaceae), and of some Eurasian relatives. Bot. J. Linn. Soc. 124: 361-373. [ Links ]

https://doi.org/10.1111/j.1095-8339.1997.tb02002.x SASSONE, A. B. & S. C. ARROYO-LEUENBERGER. 2018. Revisión taxonómica de las especies del género sudamericano Tristagma (Amaryllidaceae, Allioideae). Ann. Missouri Bot. Gard. 103: 163174. https://doi.org/10.3417/2018069 SASSONE, A. B., F. R. BLATTNER, L. M. GIUSSANI & D. H. HOJSGAARD. 2022. First glimpse on spring starflower domestication. Genes 13: 243. https://doi.org/10.1111/mec.16009 SASSONE, A. B. & L. M. GIUSSANI. 2018. Reconstructing the phylogenetic history of the tribe Leucocoryneae (Allioideae): Reticulate evolution and diversification in South America. Mol. Phylogenet. Evol. 127: 437-448. https://doi.org/10.1016/j.ympev.2018.04.034 SASSONE, A. B., L. M. GIUSSANI & E. R. GUAGLIANONE. 2013. Multivariate studies of Ipheion (Amaryllidaceae, Allioideae) and related genera. Plant Syst. Evol. 299: 1561-1575. https://doi.org/10.1007/s00606-013-0819-5 SASSONE, A. B., D. H. HOJSGAARD, L. GIUSSANI, J. BRASSAC & F. R. BLATTNER. 2021. Genomic, karyological and morphological changes of South American garlics (Ipheion) provide insights into mechanisms of speciation in the Pampean region. Mol. Ecol. 30: 3716-3729. https://doi.org/10.1111/mec.16009 SASSONE, A. B., A. LÓPEZ, D. H. HOJSGAARD & L. M. GIUSSANI. 2018. A novel indicator of karyotype evolution in the tribe Leucocoryneae (Allioideae, Amaryllidaceae). J. Plant Res. 131: 211-223. [ Links ]

https://doi.org/10.1007/s10265-017-0987-4 SNIJMAN, D. A. & R. H. ARCHER. 2003. Amaryllidaceae. In: GERMISHUIZEN, G. & N. L. MEYER (eds.), Plants of southern Africa: an annotated checklist (Strelitzia 14), pp. 957-967. National Botanical Institute, Pretoria. [ Links ]

SNIJMAN, D. A. & H. P. LINDER. 1996. Phylogenetic relationships, seed characters, and dispersal system evolution in Amaryllideae (Amaryllidaceae). Ann. MissouriBot. Gard. 83: 362-386. https://doi.org/10.2307/2399866 [ Links ]

SNIJMAN, D. A. & A. W. MEEROW. 2010. Floral and macroecological evolution within Cyrtanthus (Amaryllidaceae): inferences from combined analyses of plastid ndhF and nrDNA ITS sequences. S. Afr J. Bot. 76: 217-238. [ Links ]

https://doi.Org/10.1016/j.sajb.2009.10.010 [ Links ]

SNIJMAN, D. A. & G. WILLIAMSON. 1994. A taxonomic re-assessment of Ammocharis herrei and Cybistetes longifolia (Amaryllideae: Amaryllidaceae). Bothalia 24: 127-132. [ Links ]

SNOEIJER, W. 2004. Agapanthus: a revision of the genus. Timber Press, Portland. [ Links ]

STAFFORD, G. I., M. J. WIKKELS0, L. NANCKE, A. K. JÁGER, ... & N. R0NSTED. 2016. The first phylogenetic hypothesis for the southern African endemic genus Tulbaghia (Amaryllidaceae, Allioideae) based on plastid and nuclear DNA sequences. Bot. J. Linn. Soc. 181: 156-170. https://doi.Org/10.1 m/boj.12417 [ Links ]

STERN, F. C. 1956. Snowdrops and snowflakes. A study of the genera Galanthus and Leucojum. The Royal Horticultural Society, London. [ Links ]

STRYDOM, A., R. KLEYNHANS & J. J. SPIES. 2007. Chromosome studies on African plants. 20. Karyotypes of some Cyrtanthus species. Bothalia 37: 103-108. [ Links ]

TRAUB, H. P. 1963. Genera of the Amaryllidaceae. American Plant Life Society, La Jolla. [ Links ]

TRAUB, H. P. & H. N. MOLDENKE. 1949. Amaryllidaceae: tribe Amarylleae. American Amaryllis Society, Stanford. [ Links ]

VOSA, C. 2007. Prototulbaghia (Alliaceae), a new genus of the Alliaceae family from the Leolo mountains in Sekhukhuneland, South Africa. Caryologia 60: 273278. https://doi.org/10.1080/00087114.2007.10797948 [ Links ]

VOSA, C. G. 2009. An updated and illustrated taxonomic synopsis of the genus Tulbaghia (Alliaceae). Herbertia 63: 208-219. [ Links ]

WATERS, M. T., A. M. M. TILEY, E. M. KRAMER, A. W. MEEROW, ... & R. W. SCOTLAND. 2013. The corona of the daffodil Narcissus bulbocodium shares stamen-like identity and is distinct from the orthodox floral whorls. Plant J. 74: 615-625. https://doi.org/10.! 111/tpj.12150 [ Links ]

WEBB, D. A. 1980. Narcissus L. In: TUTIN, T. G. et al. (eds.), Flora Europaea 5, pp. 78-84. Cambridge University Press, Cambridge. WEICHHARDT-KULESSA, K., T. BORNER, J. SCHMITZ, U. MÜLLER-DOBLIES & D. MÜLLER-DOBLIES. 2000. Controversial taxonomy of Strumariinae (Amaryllidaceae) investigated by nuclear rDNA (ITS) sequences. Plant Syst. Evol. 223: 1-13. https://doi.org/10.1007/BF00985323 WEITEMIER, K., S. C. K. STRAUB, R. C. CRONN, M. FISHBEIN, ... & A. LISTON. 2014. Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. Appl. Plant Sci. 2: 1400042. http://doi.org/10.3732/apps.1400042. [ Links ]

WILDE DUYFJES, B. E. E. DE. 1976. A revision of the genus Allium L. (Liliaceae) in Africa. H. Veenman and Zonen B.V., Wageningen. [ Links ]

WILEY, E. O. 1981. Phylogenetics, the theory andpractice of phylogenetic systematics. John Wiley and Sons, New York. [ Links ]

WILSENACH, R. 1963. A cytotaxonomic study of the genus Cyrtanthus. Cytologia 28: 170-180. https://doi.org/10.1508/cytologia.28.170 WING, S. L., F. HERRERA, C. A. JARAMILLO, C. GÓMEZ-NAVARRO, ... & C. C. LABANDEIRA, [ Links ]

2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proc. Nat.Acad. Sci. 106: 1862718632. https://doi.org/10.1073/pnas.0905130106 XIE, D. F., J. B. TAN, Y YU, L. J. GUI, ... & X. J. HE. 2020. Insights into phylogeny, age and evolution of Allium (Amaryllidaceae) based on the whole plastome sequences. Ann. Bot. 125: 1039-1055. https://doi.org/10.1093/aob/mcaa024 ZHANG, F., N. WANG, G. CHENG, X. SHU, ... & Z. WANG. 2021. Comparative chloroplast genomes of four Lycoris species (Amaryllidaceae) provides new insight into interspecific relationship and phylogeny. Biology 10: 715. [ Links ]

https://doi.org/10.3390/biology10080715 ZHANG, S. Y, H. T. WANG, Y F. HU, W. ZHANG, ... & J. W. SHAO. 2022. Lycoris insularis (Amaryllidaceae), a new species from eastern China revealed by morphological and molecular evidence. Phytokeys 206: 153-165. https://doi.org/10.3897/phytokeys.206.90720Links ]

ZOLLNER, O. & L. ARRIAGADA. 1998. The tribe Gilliesieae (Alliaceae) in Chile. Herbertia 53: 104-107. [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License