SciELO - Scientific Electronic Library Online

vol.82 número4Vigilancia del vector del dengue en el límite de su distribución. Una experiencia colaborativa entre los ámbitos científico, municipal y ciudadanoEscala revisada de valoración funcional de esclerosis lateral amiotrófica: adaptación transcultural índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO


Medicina (Buenos Aires)

versión impresa ISSN 0025-7680versión On-line ISSN 1669-9106


DORR, Ricardo A.; SILBERSTEIN, Claudia; IBARRA, Cristina  y  TORIANO, Roxana. Obtaining new information on hemolytic uremic syndrome by text mining. Medicina (B. Aires) [online]. 2022, vol.82, n.4, pp.513-524. ISSN 0025-7680.

Hemolytic uremic syndrome (HUS) is characterized by thrombotic microangiopathy, hemolytic anemia, thrombocytopenia and acute renal failure. It can cause from permanent sequelae to death, mainly in children. In this work, using text mining (TM), we analyzed the explicit and implicit text of 16 192 original scientific articles on HUS indexed in the Europe PMC database. The objectives were to examine behaviors, track trends, and make predictions and cross-check data with other sources of information. For the analysis we used -among other computational tools- specially developed workflows (WF) in the KNIME platform. The TM on the words of the abstracts of the publications made it possible to: detect undescribed associations between events related to HUS; extract underly ing information; make thematic clustering using unsupervised algorithms; make forecasting about the course of research associated with the topic. Both the approach and the WFs developed to perform Data Science on HUS can be applied to other biomedical topics and other scientific databases, making it possible to analyze relevant aspects in the field of human health to improve research, prevention and treatment of multiples diseases.

Palabras clave : Hemolytic uremic syndrome; Data mining; Text mining; Forecasting; Automatic information processing.

        · resumen en Español     · texto en Español     · Español ( pdf )