SciELO - Scientific Electronic Library Online

vol.49 número1Finite element approximation of the vibration problem for a Timoshenko curved rod índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO


Revista de la Unión Matemática Argentina

versión On-line ISSN 1669-9637


REVEL, Gustavo; ALONSO, Diego M.  y  MOIOLA, Jorge L.. Bifurcation theory applied to the analysis of power systems. Rev. Unión Mat. Argent. [online]. 2008, vol.49, n.1, pp. 1-14. ISSN 1669-9637.

In this paper, several nonlinear phenomena found in the study of power system networks are described in the context of bifurcation theory. Toward this end, a widely studied 3-bus power system model is considered. The mechanisms leading to static and dynamic bifurcations of equilibria as well as a cascade of period doubling bifurcations of periodic orbits are investigated. It is shown that the cascade verifies the Feigenbaum's universal theory. Finally, a two parameter bifurcation analysis reveals the presence of a Bogdanov-Takens codimension-two bifurcation acting as an organizing center for the dynamics. In addition, evidence on the existence of a complex global phenomena involving homoclinic orbits and a period doubling cascade is included.

Palabras clave : nonlinear systems; power systems; voltage collapse; numerical analysis; bifurcations; chaos.

        · texto en Inglés     · Inglés ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License