SciELO - Scientific Electronic Library Online

vol.33 número2An optimal approach to the multiple-depot heterogeneous vehicle routing problem with time window and capacity constraintsA hybrid methodology for optimization of multi-stage flash-mixer desalination systems índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO


Latin American applied research

versión impresa ISSN 0327-0793


SOTOMAYOR, O. A. Z.; PARK, S. W.  y  GARCIA, C.. Model reduction and identification of wastewatertreatment plants - A subspace approach. Lat. Am. appl. res. [online]. 2003, vol.33, n.2, pp. 135-140. ISSN 0327-0793.

In this paper, a low-order linear time-invariant (LTI) state-space model that describes the nitrate concentrations in both anoxic and aerobic zones of an activated sludge wastewater treatment plant (WWTP), for biological treatment of municipal sewage, is identified around a given operating point (a model with lumped parameters). Several subspace identification methods, such as CCA, N4SID, MOESP and DSR are applied and their performance are compared, based on performance quality criteria, in order to select the best-reduced model. The selected model is validated with a data set not used in the identification procedure and it describes well the complex dynamics of the process. This model is asymptotically stable and it can be used for control, optimization, prediction and monitoring purposes. In this work the ASWWTP-USP benchmark is used as a data generator. This benchmark simulates the biological, chemical and physical interactions that occur in a complex activated sludge plant.

Palabras clave : Subspace Identification Methods; Reduced Order Models; State-Space Models; Activated Sludge Process; Wastewater Treatment.

        · texto en Inglés     · Inglés ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License