SciELO - Scientific Electronic Library Online

 
vol.33 número4Robust identification of PWL-Wiener Models: use in model predictive controlHammerstein an Wiener model identification using rational orthonormal bases índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Bookmark


Latin American applied research

versión impresa ISSN 0327-0793

Resumen

MARADEI, C.; PIOTRKOWSKI, R.; SERRANO, E.  y  RUZZANTE, J. E.. Acoustic emission signal analysis in machining processes using wavelet packets. Lat. Am. appl. res. [online]. 2003, vol.33, n.4, pp. 443-448. ISSN 0327-0793.

The acoustic emission (AE) phenomenon is useful for monitoring machining processes. AE is directly related to the tool condition, since it is generated by plastic deformation, abrasion, debris fracture, and crack propagation. In the research reported in this paper several AE parameters were measured during the wearing process of a tool insert in turning tests. While some of these parameters are indicative of the wear degree, their applicability in industrial activities is limited. This occurs because the establishment of a control threshold value strongly depends on the process variables. In this paper parameters obtained from the Wavelet Packet (WP) transform coefficients, were employed. They were the Power and the Entropy of the WP coefficients both in the 300 kHz - 600 kHz frequency range. These two parameters were adequate and specific for the determination of the tool condition.

Palabras llave : Acoustic Emission; Machining; Signal Analysis; Wavelet Packets.

        · texto en Inglés     · pdf en Inglés