SciELO - Scientific Electronic Library Online

 
vol.34 número3Enhancement to the LuGre model for global description of friction phenomenaA hybrid neural model for the production of sorbitol and gluconic acid using immobilized Zymomonas mobilis cells índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Bookmark


Latin American applied research

versión impresa ISSN 0327-0793

Resumen

RUIZ-LEON, J.. Decoupling with stability of linear multivariable systems: An algebraic approach. Lat. Am. appl. res. [online]. 2004, vol.34, n.3, pp. 179-186. ISSN 0327-0793.

The result that a linear multi-variable system is decouplable with stability if and only if its associated stable interactor is diagonal, is proved in this paper using an algebraic approach. As it will be shown, this condition is actually equivalent to the coincidence between the infinite and unstable global structure (infinite and unstable zeros) and the row infinite and unstable structure of the system. Two procedures are presented to compute a state feedback which decouples the system with stability, the first one based on the solution of a polynomial matrix equation, and the second one based on the static left kernel of a strictly proper rational matrix. Illustrative examples are also presented.

Palabras llave : Linear Systems; Decoupling; Stability; Infinite Structure; Algebraic Approach.

        · texto en Inglés     · pdf en Inglés