SciELO - Scientific Electronic Library Online

vol.36 número4A CP approach to the scheduling of resource-constrained multiproduct continuous facilitiesOptimal programming of batch distillation: vessel network operations índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO


Latin American applied research

versión impresa ISSN 0327-0793


NEIRO, S. M. S.  y  PINTO, J. M.. Langrangean decomposition applied to multiperiod planning of petroleum refineries under uncertainty. Lat. Am. appl. res. [online]. 2006, vol.36, n.4, pp. 213-220. ISSN 0327-0793.

This work presents a stochastic multiperiod model for representing a petroleum refinery. Uncertainty is taken into account in parameters such as demands, product sale prices and crude oil prices. In the present work, uncertainty is considered as a set of discrete scenarios, each representing a possible shifting of market expectations. Every environment is weighted through an expected probability of occurrence. Previous work revealed that the computational effort of uncertain multiperiod refinery production planning models grows exponentially with the number of time periods and scenarios. Therefore, in order to reduce the computational effort over uncertain long-planning horizons, special techniques must be employed. The proposal is to apply Lagrangean Decomposition, which exploits the block-diagonal structure of the problem, to reduce solution time by decomposing the model on a temporal basis. Solution of the proposed algorithm showed a significant reduction in computational effort with respect to the full-scale outer approximation solver.

Palabras clave : Lagrangean Decomposition; Uncertainty; Petroleum Refinery; Planning; MINLP.

        · texto en Inglés     · Inglés ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License