SciELO - Scientific Electronic Library Online

vol.38 número4Baro-diffusion and thermal-diffusion in a binary fluid mixture confined between two parallel discs in presence of a small axial magnetic fieldReduction of sulfur levels in kerosene by Pseudomonas sp strain in an airlift reactor índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO


Latin American applied research

versión impresa ISSN 0327-0793


MARTINS, R. R.; SILVEIRA, F. S.  y  MARTINS-COSTA, M. L.. Numerical investigation of inertia and shear-thinning effects in axisymmetric flows of carreau fluids by a galerkin least-squares method. Lat. Am. appl. res. [online]. 2008, vol.38, n.4, pp. 321-328. ISSN 0327-0793.

This article presents a finite element simulation of Carreau flows through an abrupt contraction. The employed mechanical model consists in using the Carreau viscosity equation to characterize the shear-thinning fluid behavior, giving rise to a generalization of Navier-Stokes equation containing a non-linear diffusion term. A Galerkin-Least Squares methodology approximates the mechanical model circumventing the Babuška-Brezzi condition, which consists of adding to the classical Galerkin method mesh-dependent residuals, resulting from least squares of the Euler-Lagrange equations. Numerical results for both velocity and pressure fields accounting for shear-thinning and fluid inertia effects have been obtained for an axisymmetric 4:1 sudden contraction with Carreau number ranging from 0 to 100, power-law exponent from 0.2 to 1.0 and Reynolds number from 2 to 100. These results have shown good agreement with the literature.

Palabras clave : Non-Newtonian Fluids; Carreau Equation; Sudden Contraction Flow; Galerkin-Least Squares Method.

        · texto en Inglés     · Inglés ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License