SciELO - Scientific Electronic Library Online

vol.39 número3Block-based transceivers for frequency selective channels with reduced redundancyRelative error control in quantization based integration índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO


Latin American applied research

versión impresa ISSN 0327-0793


GONZALEZ, M. A.  y  BALLARIN, V.L.. Automatic marker determination algorithm for watershed segmentation using clustering. Lat. Am. appl. res. [online]. 2009, vol.39, n.3, pp. 225-229. ISSN 0327-0793.

Biomedical image processing is a difficult task because of the presence of noise, textured regions, low contrast and high spatial resolution. The objects to be segmented show a great variability in shape, size and intensity whose inaccurate segmentation conditions the ulterior quantification and parameter measurement. The partition of an image in regions that allow the experienced observant to obtain the necessary information can be done using a Mathematical Morphology tool called the Watershed Transform (WT). This transform is able to distinguish extremely complex objects and is easily adaptable to various kinds of images. The success of the WT depends essentially on the existence of unequivocal markers for each of the objects of interest. The standard methods of marker detection are highly specific, they have a high computational cost and they determine markers in an effective but not automatic way when processing highly textured images. This paper proposes the use of clustering techniques for the automatic detection of markers that allows the application of the WT to biomedical images. The results allow us to conclude that the method proposed is an effective tool for the application of the WT.

Palabras clave : Image Segmentation; Watershed Transform; Mathematical Morphology; Pattern Recognition.

        · texto en Inglés     · Inglés ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License