SciELO - Scientific Electronic Library Online

vol.39 número3Estimation of the particle size distribution of a dilute latex from combined elastic and dynamic light scattering measurements: A method based on neural networks índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO


Latin American applied research

versión impresa ISSN 0327-0793


TOSETTI, S.; PATINO, D.; CAPRARO, F.  y  GAMBIER, A.. Control of a production-inventory system using a pid and demand prediction based controller. Lat. Am. appl. res. [online]. 2009, vol.39, n.3, pp.267-273. ISSN 0327-0793.

The need of reducing inventory levels as much as possible without loosing sales opportunities is an important goal not only for small but also for mid-size and large companies, on account of the high costs associated with large inventory stocks. In general, the performance of inventory systems is also affected by the Bullwhip effect caused, among other factors, by non-zero lead times. This paper proposes an automatic pipeline feedback order-based production control system (APIOBPCS) considering a demand with cyclic and stochastic components. The dynamics and delays of the production process are modeled as a pure delay. The control system structure consists of a PID controller and demand prediction based on an Extended Kalman Filter (EKF). The main objective of the controller is to stabilize and regulate the inventory levels about a desired set-point. The extended Kalman Filter estimates the parameters of a Volterra time-series model to predict future values of the demand. The control system is evaluated by simulations, showing a good performance and better results than those achieved by using traditional inventory control techniques.

Palabras clave : Production-Inventory Systems; Control; Prediction; Extended Kalman Filter.

        · texto en Inglés     · Inglés ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons