SciELO - Scientific Electronic Library Online

vol.40 número3Acoustical properties of Schiff base solutions in dmfCarbon monoxide emitted from the city of Buenos Aires and transported to neighbouring districts índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO


Latin American applied research

versión impresa ISSN 0327-0793


FRANCISCO, M.  y  VEGA, P.. Automatic tuning of model predictive controllers based on multiobjective optimization. Lat. Am. appl. res. [online]. 2010, vol.40, n.3, pp.255-265. ISSN 0327-0793.

In this work a general procedure for tuning multivariable model predictive controllers (MPC) with constraints is presented. Control system parameters are obtained by solving a multiobjective optimization problem. The set of objectives includes controllability aspects, in terms of the H norms of some closed loop transfer functions of the system, and others related to the range of manipulated and controlled variables, expressed using the l1 norm. Moreover, the use of multiple linearized models for tuning, allows for the specification of robust performance criteria through a set of constraints. The mathematical optimization for tuning all controller parameters is tackled in two iterative steps. First, integer parameters are obtained using a specific random search, and secondly a sequential programming based method is used to tune the real parameters. As a validation example, the tuning of the control system for the activated sludge process of a wastewater treatment plant has been selected.

Palabras clave : Model Predictive Control; Activated Sludge Process; Mixed Sensitivity Problem; Robust Control Theory; l1 Norm.

        · texto en Inglés


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons