SciELO - Scientific Electronic Library Online

 
vol.40 número4An analytical study of radiation effect on the ignition of magnesium particles using perturbation theoryLimit of applicability of the monomer-enhanced mechanism for radical generation in persulfate initiated mechanism for radical generationin persulfate initiated polymerization of acrylamide índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Latin American applied research

versão impressa ISSN 0327-0793

Resumo

KRISHNAN, J.  e  SWAMINATHAN, T.. Kinetic modeling of a photocatalytic reactor designed for removal of gas-phase benzene: a study on limiting resistances using design of experiments. Lat. Am. appl. res. [online]. 2010, vol.40, n.4, pp.359-364. ISSN 0327-0793.

Experiments were conducted at room temperatures, in an immobilized annular tube reactor, using titanium dioxide as the photocatalyst, to identify the influence of important operational parameters, viz., catalyst load (5-20 g m-2), benzene concentration (0.2-6 g m-3) and flow rate (0.2-1 L min-1) on the removal of benzene. Removal efficiencies for benzene ranged from 7% to 96% depending on the range of levels of these process parameters. A modified Langmuir-Hinshelwood (L−H) kinetic model has been suggested based on the experimental observations. The use of a combined plug-flow type L−H kinetic model yielded a design equation that can be used as the basis for the photoreactor scale-up as well as to find the mass transfer and reaction resistances in the photoreactor. The ratio of reaction rate resistance to the overall resistance was found to play an important role in establishing the predominant resistances between mass transfer and reaction rate occurring in the photoreactor.

Palavras-chave : Photocatalysis; Gas-Phase Benzene; Langmuir-Hinshelwood Model; Immobilized Photoreactor.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons