SciELO - Scientific Electronic Library Online

vol.41 número1Kinetics of the esterification of maleic anhydride with castor oil índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO


Latin American applied research

versão impressa ISSN 0327-0793


GALVEZ, N.B.; COUSSEAU, J.E.; PASCIARONI, J.L.  e  AGAMENONI, O.E.. Efficient non homogeneous CFAR processing. Lat. Am. appl. res. [online]. 2011, vol.41, n.1, pp.1-9. ISSN 0327-0793.

In this work a new radar detection method is proposed, the Cell Average Neural Network Constant false Alarm Rate (CANN CFAR), which can be used with Weibull distributed non homogeneous radar returns. This processor combines Maximum Likelihood estimation method with Neural Networks for the clutter parameter estimation, resolving homogeneity and determining clutter bank transition points and size. To characterize its performance, probability of detection is evaluated using Monte Carlo simulations and compared to other efficient CFAR schemes. As a result, CANN CFAR detection has better performance than conventional CFAR processors, especially when detecting targets located near clutter heterogeneities. An additional advantage of the proposed technique is its efficiency when determining clutter transition points, bank size and threshold setting. This efficiency translates in lower computation time than other CFAR algorithms, mostly considering real time processing.

Palavras-chave : Neural Networks; Threshold; CFAR; Clutter Detection; Statistics.

        · texto em Inglês     · Inglês ( pdf )


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons