SciELO - Scientific Electronic Library Online

 
vol.41 número2Thermal diffusion effect on a three-dimensional mhd free convection with mass transfer flow from a porous vertical plateModeling conventional one-dimensional drying of radiata pine based on the effective diffusion coefficient índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Bookmark


Latin American applied research

versión impresa ISSN 0327-0793

Resumen

ROSSOMANDO, F. G.; SORIA, C.; PATINO, D.  y  CARELLI, R.. Model reference adaptive control for mobile robots in trajectory tracking using radial basis function neural networks. Lat. Am. appl. res. [online]. 2011, vol.41, n.2, pp. 177-182. ISSN 0327-0793.

This paper propose an Model Reference Adaptive Control (MRAC) for mobile robots for which stability conditions and performance evaluation are given. The proposed control structure combines a feedback linearization model, based on a kinematics nominal model, and a direct neural network-based adaptive dynamics control. The architecture of the dynamic control is based on radial basis functions neural networks (RBF-NN) to construct the MRAC controller. The parameters of the adaptive dynamic controller are adjusted according to a law derived using Lyapunov stability theory and the centers of the RBF are adapted using the supervised algorithm. The resulting MRAC controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance with a small computational effort. Stability result for the adaptive neuro-control system is given. It is proved that control errors are ultimately bounded as a function of the approximation error of the RBF-NN. Experimental results showing the practical feasibility and performance of the proposed approach to mobile robotics are given.

Palabras llave : System Identification; Adaptive Neural Nets; Mobile Robot Control.

        · texto en Inglés     · pdf en Inglés