SciELO - Scientific Electronic Library Online

vol.42 issue3Methodology based on SVD for control structure designA new formulation to the shortest path problem with time windows and capacity constraints author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO


Latin American applied research

Print version ISSN 0327-0793


PELAYO-ORTIZ, C.; GONZALEZ-ALVAREZ, V.; STEYER, J.-P.  and  BORIES, A.. A comparison of first principle and neural network modelling for a novel depollution process. Lat. Am. appl. res. [online]. 2012, vol.42, n.3, pp.251-255. ISSN 0327-0793.

The capability of first principles models and neural networks for predicting the main state variables (biomass and substrate concentrations) in a novel depollution bioprocess has been tested. Experimental data recorded from batch sequential cultures of anaerobic bacteria and yeast to transform organic nitrogen and carbonaceous substrates into useful feed material were used to train the net and validate the first principle model. Both modeling approaches were tested for a number of experiments carried out under different conditions (maximum growth rate cultures, high pH conditions and starving nutrient conditions). The results indicate that the performance of a simple well-trained neural network model was equivalent or better than the first principles model but showed some limitations for providing insight into the mechanism governing the bioprocess. Limitations of both modeling approaches are finally discussed.

Keywords : Mathematical Models; First Principles; Artificial Neural Networks; Depollution Process.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License