SciELO - Scientific Electronic Library Online

 
vol.35 issue3Apigenin inhibits cell migration through MAPK pathways in human bladder smooth muscle cells author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

Share


Biocell

Print version ISSN 0327-9545

Abstract

CAVICCHIA, Juan Carlos et al. The actin filament network associated to Sertoli cell ectoplasmic specializations. Biocell [online]. 2011, vol.35, n.3, pp.81-89. ISSN 0327-9545.

Junctional devices in Sertoli cells conform the blood-testis barrier and play a key role in maturation and differentiation of germ cells. The spacial distribution of ectoplasmic specializations of Sertoli cells was studied by β-actin immunolabelling, using laser confocal and transmission electron microscopy. For confocal microscopy, β-actin immunolabelling of ectoplasmic specializations was studied over the background of either prosaposin or glutaredoxin immunolabelling of the Sertoli cytoplasm. Labelling was found near the basal lamina, surrounding early spermatocytes (presumably in leptotene-zygotene) or at one of two levels in the seminiferous epithelium: (1) around deep infoldings of the Sertoli cell cytoplasm, in tubular stages before spermiation, and (2) in the superficial part of the seminiferous epithelium, in tubular stages after or during spermiation. For transmission electron microscopy, β-actin immunolabelling of ectoplasmic specializations was also used. Ectoplasmic specializations were found at two different levels of the seminiferous epithelium. We also used freeze fracture to analyze the characteristics of tubulo-bulbar complexes, a known component of apical ectoplasmic specializations. Also, these different approaches allowed us to study the complex arrangement of the actin cytoskeleton of Sertoli cells branches, which surround germ cells in different stages of the spermatogenic cycle.  Our results show a consistent labelling for β-actin before, during and after the release of spermatozoa in the tubular lumen (spermiation) suggesting a significant role of the actin network in spermatic cell differentiation. In conclusion, significant interrelations among the β-actin network, the junctional complexes of the blood-testis barrier and the ectoplasmic specializations were detected at different stages of the seminiferous cycle.

Keywords : β-actin; Ectoplasmic specializations; Sertoli cell; Seminiferous epithelium.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License