SciELO - Scientific Electronic Library Online

 
vol.14 issue2Weed seed bank along a micro-topographical gradient in an arable soil in Azul (Buenos Aires)Vegetation recovery on a gas-pipeline track along an altitudinal gradient in the Argentinean Yungas forests author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

Share


Ecología austral

On-line version ISSN 1667-782X

Abstract

GONZALEZ-POLO, Marina; FOLGARAIT, Patricia J  and  MARTINEZ, Alicia. Seasonal effects of anthills of Camponotus punctulatus on the microbial biomass and activity in a subtropical pasture from Argentina. Ecol. austral [online]. 2004, vol.14, n.2, pp.149-163. ISSN 1667-782X.

Ants are important sources of soil disturbance and have often been considered ecosystem engineers. The physical and chemical changes produced by these insects may affect soil microorganisms. Camponotus punctulatus, a native ant species in Argentina, builds large soil nests called tacurúes, after agriculture disturbance. Soil nutrient concentrations in anthills are greater in comparison to control soils. We hypothesized that the higher concentration of soil nutrients may be due to increased decomposition and mineralization because of the greater abundance and activity of microorganisms in the anthill. We also hypothesized that microbial biomass and activity should be greater at warmer and wet season. We collected six paired soil samples (on and off the anthill) throughout one year at five different times from a sown pasture of Setaria sphacelata in Corrientes, Argentina. At the beginning of each soil-sampling period, we buried litterbags (1 µm mesh) with Setaria sphacelata and removed the buried ones from last sampling period. From soil samples, we quantified microbial biomass by the fumigation-incubation technique, whereas microbial activity was measured by dehydrogenase (total and fungal) and cellulase activity, and microbial decomposition was quantified from litterbags. Principal Components Analysis indicated that anthills were characterized by lower microbial activity at all sample periods throughout the year. However, decomposition was significantly higher in anthills during January-April and April-July, despite a lower microbial activity and biomass. The comparison between total and fungal dehydrogenase activity showed a significantly higher bacterial activity on anthills. Microorganism biomass and activity, as well as decomposition, changed throughout the year according to seasonal variations in temperature and precipitation. The peak of microbial activity was recorded in January, whereas the greatest microbial biomass was observed during the winter months. Decomposition was positively correlated with dehydrogenase and cellulase activity, but negatively correlated with microbial biomass at both microsites. Our results suggest that microbial biomass reflects mainly inactive microorganisms (because of the significant negative correlation with decomposition), whereas dehydrogenase activity is proposed as a good indicator of active soil microbial status. The greater proportion of bacterial activity in the anthill could help to explain (among others possibilities that are discussed) the enhancement of nutrients at this microsite, although more studies are needed in this regard.

Keywords : Ants; Setaria sphacelata; Soil enzymes; Litter decomposition; Northeaster Argentine.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License