SciELO - Scientific Electronic Library Online

vol.27 número3Aportes de la genética de la conservación al estudio de los mamíferos neotropicales: revisión y análisis crítico índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




  • No hay articulos citadosCitado por SciELO

Links relacionados


Ecología austral

versión On-line ISSN 1667-782X


GARIBALDI, Lucas A; ARISTIMUNO, Francisco J; ODDI, Facundo J  y  TIRIBELLI, Florencia. Multimodel inference in social and environmental sciences. Ecol. austral [online]. 2017, vol.27, n.3, pp.348-363. ISSN 1667-782X.

Professionals of the social and environmental sciences must solve problems (answer questions) based on data sampling and analyses. Commonly, all professionals face similar challenges: they need to take decisions on a population (e.g., all the trees of a region), but only have data from a sample (some trees of that region). A key tool in this process is to propose population models for the response variable (tree growth as a function of tree age and climatic conditions) and then use model predictions to take decisions (e.g., when to cut trees according to climatic conditions). In this paper we discuss how to propose, estimate, and select models of a population based on sampling data. We put special emphasis in proposing several alternative models (hypotheses) to solve one problem (e.g., different tree growth functions for age), which must be proposed before data sampling, including a null model (tree growth does not depend on tree age or climatic conditions). Models guide us on how data must be sampled for a valid contrast (growth measurements in trees of different age and under contrasting climates). Then, the Akaike information criterion (AIC) can be employed to sort the most parsimonious models, selecting those with the best goodness of fit (likelihood) and the lowest number of parameters (model complexity). Along the text, we introduce basic notions of multimodel inference and discuss common user mistakes. We provide real examples, and share their data and the analyses code in R, a free and open source software. In addition to be useful to professionals from different sciences, we expect our paper to promote the teaching of multimodel inference in graduate courses.

Palabras clave : AIC; Goodness of fit; Akaike; Hypothesis; Inference; Model; Parsimony; Prediction; P value; Likelihood.

        · resumen en Español     · texto en Español


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons