SciELO - Scientific Electronic Library Online

vol.38 número2Curvas de altura dominante e índice de sitio en plantaciones de Prosopis alba índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO



versión On-line ISSN 1668-298X


OVANDO, G et al. Performance of different Sentinel-2A vegetation indices to estimate soybean yield in precision farming. Agriscientia [online]. 2021, vol.38, n.2, pp.1-12. ISSN 1668-298X.

Precision agriculture (PA) aims to identify crop and soil variability to improve management and optimize the use of inputs. Yield maps become a relevant tool for PA planning. Vegetation indices (VI) from remote sensing allow monitoring the spatio-temporal variation of crops in the growing season. The objective of this work was to evalúate the performance of different Sentinel-2A VIs to estímate soybean (Glycine max (L.) Merril) yield within the framework of PA. The study was carried out using a soybean yield map during the 2017/2018 season from a plot located to the south of Córdoba city, Argentina. Every two bands were taken from a Sentinel-2A image from 4/Feb/2018 and VI were calculated using differences, ratios and normalized differences. The absolute value of the Pearson linear correlation coefficient (|r|) between the different IVs and soybean yield was computed. The highest value of |r| (0.726) corresponded to the difference between bands 8 (NIR) and 12 (SWIR), allowing to reproduce with sufficient precision the spatial variability of yields in the plot.

Palabras clave : remote sensing; yield map; Pearson linear correlation coefficient.

        · resumen en Español     · texto en Español     · Español ( pdf )