SciELO - Scientific Electronic Library Online

 número33Contenidos formadores orientados a los estudios de usuarios en planes de estudios de biblioteconomia: un estudio de múltiples casosHacia un inventario provisional de las tendencias en Bibliotecología y Ciencia de la Información índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO


Información, cultura y sociedad

versión On-line ISSN 1851-1740


JARAMILLO VALBUENA, Sonia; CARDONA, Sergio Augusto  y  FERNANDEZ, Alejandro. Data Mining Streams of Social Networks, A Tool to Improve The Library Services. Inf. cult. soc. [online]. 2015, n.33, pp.63-74. ISSN 1851-1740.

The Groupware systems are a valuable source for disseminating information in contexts in which the participation of a group of people is required to perform a task. One such context is the Library, Archives and Documentation. The interactions among users and professionals in this area, who use tools such as Twitter, Facebook, RSS feeds and blogs, generate a large amount of unstructured data streams. They can be used to the problem of mining topic-specific influence, graph mining, opinion mining and recommender systems, thus achieving that libraries can obtain maximum benefit from the use of Information and Communication Technologies. From the perspective of data stream mining, the processing of these streams poses significant challenges. The algorithms must be adapted to problems such as: high arrival rate, memory requirements without restrictions, diverse sources of data and concept-drift. In this work, we explore the current state-of-the-art solutions of data stream mining originating from social networks, specifically, Facebook and Twitter. We present a review of the most representative algorithms and how they contribute to knowledge discovery in the area of librarianship. We conclude by presenting some of the problems that are the subject of active research.

Palabras clave : Data stream mining; Classification; Clustering; Concept-drift; CSCW.

        · resumen en Español     · texto en Español


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons