SciELO - Scientific Electronic Library Online

vol.82 número2Modificaciones anatomofisiológicas inducidas por residuos sólidos agrícolas (vermicompuesto) en plantines de lechuga (Lactuca sativa L.)Efectos de la cosecha de la corteza en la biología de una población de Elaeodendron transvaalense Jacq. índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




  • No hay articulos citadosCitado por SciELO

Links relacionados


Phyton (Buenos Aires)

versión On-line ISSN 1851-5657


ASTIZ, V  y  HERNANDEZ, LF. Pollen production in sunflower (Helianthus annuus L.) is affected by air temperature and relative humidity during early reproductive growth. Phyton (B. Aires) [online]. 2013, vol.82, n.2, pp.297-302. ISSN 1851-5657.

During microsporogenesis, sunflower florets might be exposed to episodes of day- and night-time temperatures exceeding 30 and 20 °C, respectively, that can affect pollen availability and consequently plant's yield. The relationship between air temperature and relative humidity during the meiotic phase of microsporogenesis, and the quantity and quality of pollen produced by the flowers, were studied in two sunflower hybrids during two years. The hybrids were grown on irrigated plots in Bahía Blanca (38° 45' S; 62° 11' W) in three planting dates (PD) at a density of 5.6 plants/m2. Flowers were consecutively taken as anthesis progressed, sectorizing the capitulum in three regions (external, middle and internal), to determine pollen grain number per flower (PGF) and pollen viability (PV). Both average air temperature (AT, °C) and relative humidity (RH, %) from reproductive stage R1 to R2 [36 to 48 days from emergence (DFE), respectively] were calculated for each PD, hybrid and capitulum sectors. Pollen viability was high (> 90%) with no differences between PD, capitulum sectors and hybrids. The number of PGF, with respect to AT (19 to 31 °C) from R1 to R2, was adjusted to a second-order polynomial (R2 =0.53, n=24; p<0.0004), with a maximum of 45,000 PGF between 21 and 25 °C. Above and below these values, the number of PGF showed a reduction of approximately 20%. There also was a significant positive relationship between pollen production and air RH. A maximum of 45,679 PGF was observed at 57% RH adjusting a second-order polynomial (R2 =0.58, n=24; p<0.0001).Temperatures over 26 °C were supraoptimal for pollen production. It is concluded that pollen production in sunflower is determined by the cumulative effects of both air temperature and relative humidity above a critical value and not only by temperature effects at a specific developmental stage before flower opening. It remains unknown whether this observation is associated with a direct effect on the mitosis or indirectly with changes in the contribution of current photoassimilates to anthers during the meiotic phase of the microsporogenesis.

Palabras clave : Sunflower; Pollen production and viability; Temperature.

        · resumen en Español     · texto en Español     · Español ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons