SciELO - Scientific Electronic Library Online

 
vol.34 número1Resistencia a la fractura por fatiga cíclica de las limas manuales de acero inoxidable y su relación con la rugosidad superficialRegistro de relación céntrica con apoyo central intraoral en platinas curvas vs. rectas con cubetas rodete en edéntulos índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Acta Odontológica Latinoamericana

versão impressa ISSN 0326-4815versão On-line ISSN 1852-4834

Resumo

VIEIRA, Carlos A. M. et al. Structural resistance of orthodontic mini-screws inserted for extraalveolar anchorage. Acta odontol. latinoam. [online]. 2021, vol.34, n.1, pp.27-34.  Epub 01-Abr-2021. ISSN 0326-4815.

The risk of fracture or strain in mini-screws is higher if diameter, length, type of alloy or insertion angle is selected inappropriately. The aims of this study were to test the structural resistance of two types of orthodontic mini-screws -one made of stainless steel and another of titanium- from an international brand and to evaluate the efficacy of two other titanium miniscrews of Brazilian origin, during an extra-alveolar anchorage procedure. The mini-screws analyzed were: Bomei stainless steel and Bomei titanium/Taiwan, Morelli titanium and Neodent titanium/ Brazil. Experiments were conducted on pig mandibles to simulate the process of extra-alveolar anchorage. Two insertion processes were used: Direct at 30°, and Indirect, starting at 60° and ending at 30° with gradual continuous movement. Strain was evaluated using Optical and Scanning Electron Microscopy. Data were evaluated using Kruskal-Wallis non-parametric statistical analysis and post hoc Tamhane test. Significant statistical differences in strain were observed among the mini-screws used in the extra-alveolar insertions, both for the direct and indirect procedures. In the indirect insertion tests, both stainless steel and titanium mini-screws suffered deformation, showing that angling can be an important factor in mini-screw failure rates. The change in angle during the insertion movement increased deformation rates independently of alloy type, increasing the risk offailure. These results could help orthodontists in choosing mini-screws for extra-alveolar anchorage, which can be performed with direct or indirect insertion. In vivo studies should be conducted to confirm the findings of this study.

Palavras-chave : orthodontics; orthodontic anchorage techniques; dentistry.

        · resumo em Português     · texto em Inglês     · Inglês ( pdf )