SciELO - Scientific Electronic Library Online

vol.29 número1La arquitectura genética como herramienta de análisis del mapa genotipo-fenotipo¿Funciona la ley de equilibrio de hardy-weinberg en autopoliploides igual que en diploides? índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




  • No hay articulos citadosCitado por SciELO

Links relacionados


BAG. Journal of basic and applied genetics

versión On-line ISSN 1852-6233


PENA MALAVERA, A; BRUNO, C  y  BALZARINI, M. False discovery rate control in association mapping with genetically structured populations. BAG, J. basic appl. genet. [online]. 2018, vol.29, n.1, pp.37-49. ISSN 1852-6233.

The association tests between molecular markers and phenotypic traits are crucial for the Quantitative Trait Loci (QTL) identification. Biotechnological advances increased the molecular marker information; consequently, the number of genotype-phenotype association tests required incremented too. The multiple statistical inferences (multiplicity) demand corrections of the p-values obtained for each comparison in order to keep limited the error rates for the family of association tests. However, classic statistical correction methods such as Bonferroni, False Discovery Rate (FDR) and the Effective Number of Independent Test (Meff) were developed in the context of independent data. Wherever, when the population genetic structure is present, the data are no longer independent. In this paper, we propose a method of correction for multiplicity based on estimation of the effective number of tests from a model that adjust for the underlying correlation structure. We evaluate the performance of the proposed procedure in the estimation of p-values for a set of simulated QTL. The results suggest that the proposed method provides control of FDR and has more power than other methods for multiplicity correction used in association mapping.

Palabras clave : Multiplicity; Association studies; Effective number of hypothesis test; Linear models.

        · resumen en Español     · texto en Español     · Español ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons