SciELO - Scientific Electronic Library Online

vol.14 issue2Natural Language Processing for the Analysis of Subjective LanguageRelationship between the results of the implementation of two instruments to the speech of a patient with self inflicted skin cuts author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO


Subjetividad y procesos cognitivos

On-line version ISSN 1852-7310


SANDOR, Ágnes  and  VORNDRAN, Angela. The detection of salient mesages from social science research papers and its aplicati on in document search. Subj. procesos cogn. [online]. 2010, vol.14, n.2, pp.260-274. ISSN 1852-7310.

Natural language processing provides effective tools to help researchers cope with the growing body of scientific literature. One of the most successful and well-established applications is information extraction, i.e. the extraction of named entities and facts. This application, however, is not well suited to social sciences, since the main messages of the publications are not facts, but rather arguments. In this article we propose a natural language processing methodology in order to detect sentences that convey salient messages in social science research papers. We consider two sentence types that bear salient messages: sentences that sum up the entire article or parts of the article and sentences that convey research issues. Such sentences are detected using a dependency parser and special "concept-matching" rules. In a proof-of-concept experiment we have shown the effectiveness of our proposition: searching for articles in the educational science document base built by the EERQI project we have found that the presence of the query word(s) in the salient sentences detected by our tool is an important indicator of the relevance of the article. We have compared the relevance of the articles retrieved with our method with those retrieved by the Lucene search engine as configured for the EERQI content base with the default relevance ranking which is based on word frequency measures. The results are complementary, which points to the utility of the integration of our tool into Lucene.

Keywords : Information extraction; Salient messages; Social sciences; Arguments; Systematic errors.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License