SciELO - Scientific Electronic Library Online

vol.35 número2Variabilidad temporal de la precipitación en la ciudad de La Plata durante el período 1909-2007: tendencia y fluctuaciones cuasiperiódicasUn modelo fractal para estimar la conductividad hídráulica no saturada de rocas fracturadas índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO



versión On-line ISSN 1852-7744


GAUZELLINO, Patricia M; ZYSERMAN, Fabio I  y  SPATH, Federico G. E.. Respuesta de geófonos a campos electromagnéticos. Geoacta [online]. 2010, vol.35, n.2, pp. 54-66. ISSN 1852-7744.

Electro-osmosis in saturated porous media is the physical phenomenon in which an electrical potential variation gives rise to fluid flow. The reciprocal phenomenon, called electro-filtration effect, is an electrical charge flux originated by pressure gradients in the pore fluid. The quotient between electrical potential and pressure gradient represents the electrokinetic coupling coefficient. In 1999 a proof field was performed, where seismic waves were generated by electromagnetic source. In this work it is explained why happen these phenomena. The equations that govern the coupled seismic and electromagnetic wavefields are presented and the transport coefficients (electrical conductivity, dynamic permeability and electrokinetic coupling coefficient) are analyzed. Some assumptions on the model allow solve a simplified set of equations where Maxwell's equations are decoupled from Biot's equations. For the Maxwell's equations it is possible to separate the electromagnetic fields in primary and secondary parts. The former can be found analytically, while to find the latter a numerical procedure is employed. Dissipative effects in porous media can be included by using complex viscoelastic moduli in space-frequency domain. Also, it is important notice that pressure gradients in the pore fluid are correctly represented if the grid points are calculated using diffusive skin depth of 55 the Biot slow wave. Numerical examples illustrate the capabilities of the modeling for detecting reservoir fluid contacts.

Palabras clave : Electroseismic; Maxwell Equations; Biot Equations; Poro-viscoelastic Medium.

        · resumen en Español     · texto en Español     · Español ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License