SciELO - Scientific Electronic Library Online

 
vol.34 issue3High volume hemodiafiltration in chronic hemodialysis patients: value of ß2 microglobulin clearance in the quality control of the procedureHematuria in polycystic kidney disease: successful treatment using superselective artery embolization author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista de nefrologia, dialisis y trasplante

On-line version ISSN 2346-8548

Abstract

MASCHERONI, Claudio A.. Physiopathology glomerular hyperfiltration in diabetes: Part I. Rev. nefrol. dial. transpl. [online]. 2014, vol.34, n.3, pp.130-154. ISSN 2346-8548.

Glomerular hyperfiltration (HF) in diabetic kidney disease is a complex hemodynamic phenomenon which occurs in early stages of the disease'™s progress and probably has negative influences, regarding the progression to the occurrence of microalbuminuria and the progress of evident diabetic nephropathy (DN). Factors involved in its physiopathology are numerous, they include: diabetic biochemical environment and several humoral factors like nitric oxide, prostaglandins, renin-angiotensin-aldosterone system, atrial natriuretic peptide, reactive oxygen species, other humoral and growth factors. These factors cause or enhance the vasodilatation of the afferent arteriole (AA). Factors with vasoconstriction function over the efferent arteriole, all considered primary vascular factors. However, these factors cannot explain other observed alterations and they constitute primary tubular abnormalities such as the increased reabsorption at the proximal tubule, probably conditioned by kidney growth in DBT and by the overexpression of the SGLT2 cotransporter. This higher proximal reabsorption would produce a lower arrival of solutes to the macula densa (MD). This would be incompatible with an action of the tubuloglomerular balance system, but it would be compatible with an action performed by the tubuloglomerular feedback system (TGFB) that senses the decrease of the ClNa concentration at the MD. Also deactivating the TGFB and causing vasodilatation of the AA, resulting in an increase of glomerular filtration (GF) and renal plasma flow (RPF), characteristic of the HF process. These two processes (vascular and tubular) could act in synergy or simultaneously, depending on the metabolic and progressing conditions of the diabetic kidney disease. Similar mechanisms could explain the salt paradox, whereby a lowsalt diet would exacerbate the HF phenomenon and a high-salt diet would decrease the GF and the RPF, which could result in unexpected clinical implications. The common therapy measures for HF strict metabolic control, a low-protein diet, and the wide clinical use of IECA or AT1 blockers (not clinically tested for this purpose) seem to be added to the new specific inhibitors of the SGLT2 cotransporter, which have shown beneficial effects in several aspects of the diabetic management. There are already some works with specific effect over the HF that seem to be encouraging. There is less experience with the potential use of C-peptide, as a therapeutic tool in these clinical situations. Clearly, defining the mechanisms involved in this complex phenomenon, will allow a better knowledge of it and a better therapeutic approach.

Keywords : Physiopathology; Glomerular hyperfiltration; Diabetes.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License