SciELO - Scientific Electronic Library Online

 
vol.45 número2Principales avances en la investigación de conuláridos (Cnidaria): problemas de interpretación y perspectivas futurasAsociaciones de foraminíferos bentónicos recientes de la Plataforma Continental Argentina (39°- 43° S y 58°- 65° O) analizadas con métodos estadísticos para datos composicionales índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Ameghiniana

versão On-line ISSN 1851-8044

Ameghiniana v.45 n.2 Buenos Aires abr./jun. 2008

 

Systematic palynological study of the Cortaderas Formation, (Mississippian) Río Blanco Basin, Argentina. Part Two

Valeria Pérez Loinaze1

1División Paleobotánica, Museo Argentino de Ciencias Naturales"Bernardino Rivadavia". Av. Angel Gallardo 470 C1405DJR, Buenos Aires, Argentina. loinazev@macn.gov.ar

Abstract. Well preserved Mississippian palynological assemblages have been obtained from the Cortaderas Formation in the Río Blanco Basin, northwestern Argentina. In this second contribution, twenty- eight from a total of seventy-eight spore species are described. A new species of trilete spores is proposed: Densosporites scalabrinii sp. nov. Worldwide geographic and stratigraphic records of taxa are analysed. The Cortaderas Formation is dated as late Viséan in age based on the presence of species of potential stratigraphic relevance, such as Reticulatisporites magnidictyus Playford and Helby, Verrucosisporites quasigobbettii Playford and Helby and Rugospora australiensis (Playford and Helby) Jones and Truswell and the absence of pollen grains. The samples collected in the uppermost level of this unit, contain some of spores typical of the Upper Carboniferous of Argentina and Brazil, although pollen grains are still absent.

Resumen. Estudio sistemático palinológico de la Formación Cortaderas, (Mississippiano), Cuenca Río Blanco, Argentina. Parte II. Asociaciones palinológicas bien preservadas del Mississippiano han sido obtenidas de la Formación Cortaderas, Cuenca de Río Blanco, noroeste de Argentina. En esta segunda contribución, se describen 28 de un total de 78 especies de esporas reconocidas para esta unidad. Una nueva especie de espora trilete es propuesta: Densosporites scalabrinii sp. nov. Se detalla la distribución geográfica mundial y estratigráfica de los diferentes taxones. La Formación Cortaderas es asignada al Viseano tardío en base al registro de especies de relevancia estratigráfica, tales como Reticulatisporites magnidictyus Playford y Helby, Verrucosisporites quasigobbettii Playford y Helby y Rugospora australiensis (Playford y Helby) Jones y Truswell y la ausencia de granos de polen. Las muestras de los niveles superiores de la unidad, contienen algunas especies de esporas típicas del Carbonífero Superior de Argentina y Brasil, aunque siguen estando ausentes los granos de polen monosacados.

Key words. Argentina; Cortaderas Formation; Mississippian; Palynology; Systematics.

Palabras clave. Argentina; Formación Cortaderas; Mississippiano; Palinología; Sistemática.

Introduction

This paper is the second part of the palynological analysis of the Cortaderas Formation based on 58 samples recovered from La Cortadera Creek, in San Juan Province, Río Blanco Basin (see fig. 1 in Perez Loinaze, 2008). The Cortaderas Formation was originally assigned to Pennsylvanian-Lower Permian by Scalabrini Ortiz (1970; 1973). However, Limarino y Césari (1992) on the base of palynomorphs reassigned the unit to the Mississippian.
The Cortaderas Formation has been divided in five facies associations: 1. basal conglomerate (FA1), 2. fining-upward cycles from conglomerates to sandstones (FA2), 3. thickening-upward cycles (FA3), 4. amalgamated sandstones (FA4) and 5. interbedded shales and diamictites (FA5). These facies associations were described in detail in the first part of this study (Perez Loinaze, 2008) along with precise information of the geological setting and stratigraphical location of samples.
Twenty-eight species are here described and the biostratigraphic significance of all the association is presented. A subordinate proportion of microplankton is present in several samples. The age of the formation is based only in the stratigraphic distribution of the recovered spores, acritarchs are not taken into account in this work. However, they will be considered in a paleoenvironmental study in progress.
All illustrated specimens are deposited in the Palynological Collection of the Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (BA Pal) and are identified with England Finder coordinates.

Systematic palaeontology

Subturma ZONOLAMINATRITILETES Smith and Butterworth 1967
Infraturma CRASSITI (Bharadwaj and Venkatachala) Smith and Butterworth 1967

Genus Crassispora (Bharadwaj) Sullivan 1964

Type species. Crassispora kosankei (Potonié and Kremp) Smith and Butterworth 1967.

Crassispora kosankei (Potonié and Kremp) Smith and Butterworth 1967
Figure 1.5

Figure 1. 1, Bascaudaspora collicula (Playford) Higgs et al. 1988, BA Pal 5788-2: O43/2; 2-3, Cristatisporites indolatus Playford and Satterthwait 1988; 2, BA Pal 5761-1: R30/1; 3, BA Pal 5760-1: T49/1; 4, Bascaudaspora collicula, BA Pal 5788-10: V41/3; 5, Crassispora kosankei (Potonié and Kremp) Smith and Butterworth 1967, BA Pal 5643-1: U27/3; 6, Crassispora trychera Neves and Ioannides 1974, BA Pal 5778-2: G28/2; 7-8, Bascaudaspora sp., 7, BA Pal 5749-1: D41/1; 8, BA Pal 5753-1: T30/3; 9, Crassispora trychera, BA Pal 5773-2: H25/1; 10-12, Bascaudaspora submarginata Higgs et al. 1988, 10, BA Pal 5739-2: Z24/3; 11, BA Pal 5741-1: P35/3, Distal surface / cara distal; 12, Proximal surface / cara proximal; 13-14, Cristatisporites matthewsii Higgs et al. 1988; 13, BA Pal 5750-1: R43/4; 14, BA Pal 5741- 1: Z38/4; 15, Cristatisporites menendezii (Menéndez and Azcuy) Playford 1978, BA Pal 5738-4: Y40/4; 16-18, Densosporites scalabrinii sp. nov., 16-17, BA Pal 5773-1: R27/3; 18, BA Pal 5773-1: G53/4. Scale bar: 20 μm / escala gráfica: 20 μm.

Description. Spores radial, trilete, amb circular to subcircular. Laesurae straight, extending almost to equator of spore radius, accompanied by thin lips with imperfect curvaturae, equatorial crassitude weakly developed. Proximal surface laevigate, distal surface sculptured with coni (0.8-1.2 μm wide at base and 0.8-1.5 μm high), irregularly distributed, bases not touching, up to 4 μm apart. Exine 1,5-2 μm thick.
Dimensions. Equatorial diameter: 53-72 μm (8 specimens).
Comparisons. Crassispora maculosa (Knox) Sullivan 1964 differs in having a more variable sculpture (including coni, galeae and grana), a more prominent crassitude and larger diameter.
The specimens here studied are very similar to those described by Smith and Butterworth (1967, page 237, plate 19, figs. 3 and 4) and other authors such as Felix and Burbridge (1967), Loboziak et al. (1976) and Owens et al. (2002, 2004). They only differ in having exine folds accompaning the laesurae, ending in imperfect curvaturae. Specimens identical with the material here recovered have been included in C. kosankei by Sullivan (1964).
Zhu (1995) pointed out that the specimens from western Europe are somewhat different from those recovered from northern China. The spores of C. kosankei from the latter country have smaller diameter, weakly developed crassitude, and smaller coni, than those from Europe. However, both coincide in the sparcely distributed sculpture.

Specimens included in this species from the Upper Carboniferous of the Tarija Basin, Argentina (di Pasquo, 1999, 2003), and from the Poti Formation (Peru), by Azcuy and di Pasquo (2005) possess a more spinose and densely distributed sculpture, than the originally described for this species. Therefore, these South American records of C. kosankei are considered doubtful.
Previous records. Upper Carboniferous: Germany, Westphalian B (Potonié and Kremp, 1955), Westphalian C-D (Bhardwaj, 1957a,b); Saudi Arabia, Westphalian D (Owens and Turner, 1995); China, Namurian (Zhu, 1993); Spain, Westphalian D - Stephanian A, (Coquel and Rodríguez, 1995); England, Namurian B (Neves, 1961), Namurian-Westphalian B (Smith and Butterworth, 1967), Westphalian A (Sullivan, 1964); West Europe, Namurian-Westphalian (Loboziak, 1971; Clayton et al., 1977; Owens et al., 2004); Netherlands, Westphalian A-C (van de Laar and Fermont, 1989); Poland, Westphalian (Loboziak et al., 1976); Russia, Namurian A/B-Westphalian (Owens et al., 1978).
Lower Carboniferous: West Europe and England, upper Brigantian (Late Viséan) (Owens et al., 2004).

Crassispora trychera Neves and Ioannides 1974
Figures 1.6, 9

Description. Spores radial, trilete, cavate, amb circular to subcircular, often folded. Laesurae straight, simple or with narrow lips, imperfect curvaturae. Equatorial crassitude about 5-7 μm thick. Proximal surface laevigate, distal surface sculptured with coni and spinae, in variable proportions among different specimens (0.5-1.5 μm wide at base and 1-2 μm high).
Dimensions. Equatorial diameter: 54 (62) 74 μm (47 specimens).
Comparisons. Crassispora kosankei has sculpture composed exclusively by coni. Crassispora maculosa (Knox) Sullivan 1964 possesses a larger sculpture and thicker exine. Apiculiretusispora multiseta Butterworth and Spinner 1967 differs in being acavate without an equatorial crassitude.
Previous records. Lower Carboniferous: Canada (Utting et al., 1989; Utting, 1991, 1996); Brazil (Melo
and Loboziak, 2003); Scotland, Tournaisian (Neves and Ioannides, 1974); England (Turner and Spinner, 1988); Ireland, Tournaisian (Owens et al., 1978); Poland (Filipiak, 2004).

Infraturma CINGULATI (Potonié and Klaus) Dettmann 1963

Genus Bascaudaspora Owens 1983

Type species. Bascaudaspora canipa Owens 1983.

Bascaudaspora collicula (Playford) Higgs, Clayton and Keegan 1988
Figures 1.1, 4

1993. Cristatisporites indolatus Césari and Limarino, page 47, fig. 6.

Description. Spores radial, trilete, cavate, amb subcircular to rounded triangular. Laesura straight, extending almost to equator, accompanied by thin lips. Intexine usually distinct, laevigate, thin. Cingulum about 2,5-3 μm thick. Proximal surface laevigate, distal surface and equatorial region sculptured with cristae and coni, relative proportion variable among specimens. Coni irregularly distributed, discrete or more frequently connected by ridges (1,2-4 μm wide at base and 2,5-5 μm high). Cristate ridges sinuous, irregularly branching, infrequently anastomosing and, in some specimens, forming a complete reticulum with lumina up to 10 μm in the longest diameter. The sculptural elements may have a fine spine superimposed on the tip.
Dimensions. Equatorial diameter: 48 (61) 86 μm (20 specimens).
Comparisons. This species, originally described by Playford (1964) as Cristatisporites, was re-assigned to Bascaudaspora by Higgs et al. (1988) because of its cristate/reticulate sculpture. The specimens of the Cortaderas Formation have all the characteristics of the species, but have thiner muri than the material illustrated by Playford (1971, 1976, 1978, 1985) and Playford and Satterthwait (1988). Moreover, they resemble the material illustrated by Van der Zwan (1980, fig. XXVII, 1-2 and XXXIX, 4) and assigned to B. submarginata.
Bascaudaspora submarginata (Playford) Higgs, Clayton and Keegan 1988 differs in possessing cristate ridges not formed by fused coni. Bascaudaspora canipa Owen 1983 possesses a reticulum formed by narrow sinuous muri.
Van der Zwan (1980) recognized an important intergradation among Bascaudaspora collicula, B. submarginata, Dictyotriletes sp. A and Asperispora perlota (Naumova) Van der Zwan 1980, and proposed the inclusion of these taxa in the Bascaudaspora submarginata "morphon", characterized by the presence of variably reticulated sculpture.
However, Playford and Satterthwait 1988 suggested that the few records of B. collicula reported from non-Australian sediments need confirmation. Moreover, they noted that the regular reticulum of the specimens described by Van der Zwan (1980) is different from the Australian pattern. The material recovered from the Cortaderas Formation does not show the same morphological variation described by Van der Zwan (1980).
More recently, Azcuy and di Pasquo (2005) constrained the species Bascaudaspora collicula to those palynomorphs previously included in this taxon having regular reticulum, and proposed the new species Cristatisporites peruvianus to include specimens characterized by the presence of an irregular reticulum, such as those assigned to B. collicula by Higgs et al. (1988) and Van der Zwan (1980). In addition, they included in C. peruvianus specimens with sculpture of spinae and galeae. The argentinian material differs by having sculpture composed by cristae and coni, but not galeae, and a more variable reticulum.
Previous records. Lower Carboníferous: Australia (Playford, 1971, 1976, 1978, 1985, Playford and Satterthwait, 1988); Ireland, Tournaisian (Higgs et al., 1988).
Devonian-Carboniferous Boundary: Australia (Van der Zwan, 1980); Germany (Higgs and Streel, 1984); China (Yang, 1999); Libya (Coquel and Moreau Benoit, 1986).

Bascaudaspora submarginata (Playford) Higgs et al. 1988
Figures 1.10-12

Description. Spores radial, trilete, amb circular to rounded subtriangular, cavate. Laesurae straight, extending almost to equator, accompanied by thin lips 1 μm wide and 1.5-2 μm high. Proximal surface laevigate, distal surface sculptured by narrow smooth sinuous muri, often branching to form an irregular reticulum (1,5-3 μm wide at base and 0,8-1,5 μm high), closely distributed. Cingulum is 1-5 μm thick formed by the equatorial expansion and partial fusion of the muri.
Dimensions. Equatorial diameter: 40-65 μm (7 specimens).
Comparisons. In the original description Playford (1964), the cavate or acavate condition of this species was not mentioned. Later, some authors (Higgs et al., 1988, Melo and Loboziak, 2000; among others) considered Bascaudaspora submarginata as acavate, but others, described cavate specimens within this species (Van der Zwan, 1980; Dueñas and Césari, 2006; etc.). Therefore, the cavate character may be variable within this species.

Bascaudaspora canipa Owens 1983 possesses a more regular reticulum. Bascaudaspora collicula differs in having muri formed by cristae and coni.
Previous records. Lower Carboniferous: Alaska, Viséan (Ravn, 1991); Australia (Playford, 1964); Brazil, Viséan (Melo and Loboziak, 2000); Canada (Utting, 1987a, 1991; Utting et al., 1989); Colombia, Llanos Oriental Basin (Dueñas and Césari, 2006); Peru, Ambo Formation, Viséan (Azcuy and di Pasquo, 2005).
Devonian-Carboniferous Boundary: Germany (Higgs and Streel, 1984); Ireland (Van der Zwan, 1980, Clayton et al., 1982; Higgs et al., 1988).

Bascaudaspora sp.
Figures 1.7-8

Description. Spores radial, trilete, amb subcircular to rounded subtriangular. Laesurae straight, extending almost to equator, accompanied by thin lips. Proximal surface laevigate, distal surface ornamented with narrow, smooth sinuous muri, often branching to form an irregular reticulum (2-8 μm wide at base and 1-2 μm high), irregular shaped lumina, usually elongated, 3-11 μm in the longest diameter. Fused sculptural elements form an equatorial cingulum about 4-6 μm thick.
Dimensions. Equatorial diameter: 41-71 μm (7 specimens).
Comparisons. Bascaudaspora canipa possesses smaller muri and a cingulum about 5-10 μm thick. Bascaudaspora variabilis Owens 1983 differs in having an equatorial cingulum and larger lumina. Bascaudaspora submarginata is distinguished from Bascaudaspora sp. by its narrower and more sparsely distributed muri, enclosing an irregular reticulum.

Infraturma CINGULICAVATI Smith and Butterworth 1967

Genus Cristatisporites Potonié and Kremp emend. Butterworth et al. 1964

Type species. Cristatisporites indignabundus (Loose) Potonié and Kremp 1954.

Cristatisporites indolatus Playford and Satterthwait 1988
Figures 1.2-3

Description. Spores radial, trilete, cingulicavate, amb subcircular to rounded triangular. Laesurae straight, extending almost to equator, accompanied by lips 2-4 μm high and 0.8-1 μm in width. Proximal surface laevigate, distal surface bearing biform broad-based projections, coni and some baculae (1.5- 2.5 μm wide at base and 1.5-4 μm high), irregularly fused basally, in groups of few sculptural elements and, in some cases, with discrete elements. Zona approximately 1/5 of spore radius, irregularly lobate due to the projection of baculae and coni (1.5-3 μm wide at base and 2-5 μm high).
Dimensions. Equatorial diameter: 53 (56) 60 μm (16 specimens).
Comparisons. The specimens originally described by Playford and Satterthwait (1988) as C. indolatus have sculpture comparable with the specimens here described. Although this species was originally described as possessing larger diameter (76-104 μm), this difference is here considered not enough to make a specific distinction. Cristatisporites indignabundus (Loose) Staplin and Jansonius 1964 differs in having a larger zona. Kraeuselisporites zosteriformis Playford and Satterwait 1988 has a zona without sculpture and a microfoveolate to microreticulate-rugulate proximal surface. Cristatisporites pseudozonatus Lele and Makada 1972 is similar to the studied specimens in having biform sculpture, but is distinguished by its irregular distribution.
Previous records. Lower Carboniferous: Australia, Viséan (Playford and Satterthwait, 1988).

Cristatisporites inordinatus (Menéndez and Azcuy) Playford 1978
Figures 2.3-4

Figure 2. 1-2, Cristatisporites menendezii (Menéndez and Azcuy) Playford 1978, BA Pal 5744-1: L30/2; 1, Distal surface / cara distal; 2, Proximal surface / cara proximal; 3-4, Cristatisporites inordinatus (Menéndez and Azcuy) Playford 1978; 3,BA Pal 5748-1: K31/0; 4, BA Pal 5762-8: K59/2; 5, Spinozonotriletes hirsutus Azcuy 1975, Ba Pal 130-3: N39/4; 6-7, Cristatisporites pseudozonatus Lele and Makada 1972, BA Pal 5790-15: O25/3; 8, 13, Spelaeotriletes sp. cf. S. pretiosus (Playford) Utting 1987, BA Pal 5741-1: Z28/2; 8, Distal surface / cara distal; 13, Proximal surface / cara proximal; 9, Cristatisporites matthewsii Higgs et al. 1988; BA Pal 5742-1: S55/1; 10, Kraeuselisporites tedantus (Playford and Satterthwait) Playford 1991, Ba Pal 5788-1: V54/2; 11, Indotriradites volkheimeri (Azcuy) com. nov., Ba Pal 5760-8: W33/1; 14, Vallatisporites sp. 1, Ba Pal 5761-3: C59/2; 15, Indotriradites variabilis Pérez Loinaze 2005, BA Pal 5733- 1: W33/2; 16, Indotriradites variabilis Pérez Loinaze 2005, BA Pal 149-2: O53/4. Scale bar: 20 μm/escala gráfica: 20 μm.

Description. Spores radial, trilete, cingulicavate, amb subcircular to rounded subtriangular, length threequarters of spore radius, accompanied by lips (2-3 μm wide at base and 0.8-1.2 μm high). Proximal surface laevigate, distal surface ornamented with coni and spinae (2-3 μm wide at base and 3-5 μm high), irregularly distributed, strongly acute spinae, usually recurved and fused at base. Cingulum formed by fusion of the sculptural elements at the equator.
Dimensions. Equatorial diameter: 48-58 μm (5 specimens).
Comparisons. Cristatisporites spinosus (Menéndez and Azcuy) Playford 1978 and Cristatisporites menendezii (Menéndez and Azcuy) Playford 1978 have more regularly distributed sculpture.
Previous records. Upper Carboniferous: Argentina, Paganzo Basin, Lagares Formation (Menéndez and Azcuy, 1972), Agua Colorada Formation (Menéndez and González Amicón, 1979; Gutiérrez, 1988) Tarija Basin, Macharetí and Mandiyutí Group (di Pasquo, 2003); Brazil, Paraná Basin (Lima et al., 1983; Souza et al., 1993; Souza, 1997, 2006).

Cristatisporites matthewsii Higgs et al. 1988
Figures 1.13-14, 2.9

Description. Spores radial, trilete, cavate, amb circular, subcircular to rounded subtriangular. Laesurae straight, length three-quarters of spore radius; simple or accompanied by lips (0.8-1 μm wide at base and 2- 3.5 μm high), forming imperfect curvaturae in some specimens. Intexine thin, laevigate, about 4/5 of spore radius. Proximal surface laevigate, distal surface and equatorial region ornamented with galeae (1.5-7 μm wide at base and 1.5-3 μm high), with bulbous subcircular bases, closely distributed; occasionally few sculptural elements may be fused at the base. In poorly preserved specimens the apical spine may be missing. Fusions of sculptural elements in equatorial region form a thickened outer margin, 2.5- 4 μm wide.
Dimensions. Equatorial diameter: 37 (46) 58 μm (61 specimens).
Comparisons. Van der Zwan (1980) combined Archaeozonotriletes acutus Kedo 1963 to Asperispora acuta including cavate spores, with equatorial crassitude, proximal surface laevigate, trilete simple or accompanied by lips, with imperfect curvature, distal surface and equatorial region ornamented with galeae and spinae with broad-bases (1-8 μm high and 1-6 μm wide at base), usually basally fused. Later, Higgs et al. 1988 reassigned the specimens described by Van der Zwan as A. acuta to Cristatisporites mathewsii, because they considered Van der Zwan`s combination invalid. These authors noted that Archaeozonotriletes acutus differs from Cristatisporites mathewsii in having a larger diameter and size of sculpture, and rarely having discrete elements. Recently, Higgs et al. (2000) recombined again Kedo`s species to Grandispora acuta (Kedo) Byvscheva 1980. Grandispora acuta differs from the specimens here studied in having larger sculptural elements and a thinner pseudosaccate exine.
Menéndez and Azcuy (1972) defined the genus Ancistrospora, for cavate spores with a laevigate proximal surface and a distal surface ornamented with biform elements, spinae and coni, forming sinuous ridges and an equatorial thickening by basal fusion. Playford (1978) considered this genus a junior synonym of Cristatisporites, and combined Ancistrospora verrucosa to Cristatisporites menendezii due to a homonym problem. The specimens described from the Ducabrook Formation (Playford, 1978, Lam. X, fig. 4- 6), as well as the Irish specimens illustrated by Higgs et al. (1988), appear to have larger and usually discrete verrucae without any basal fusion.
The size of the sculpture and the width of the equatorial thickening overlap between Cristatisporites mathewsii and C. menendezii. The main difference is that in Cristatisporites mathewsii the sculptural elements may be present as discrete elements or basally fused, with fusion mainly in the equatorial region, whereas in C. menendezii the sculpture is usually fused in the distal surface, forming sinuous ridges. As was originally described by Menéndez and Azcuy (1972, page 162, fig. 1) the verrucae of C. menendezii are fused in groups of few elements, forming elements which can be described as big verrucae.
Previous records. Lower Carboniferous: Ireland, Tournaisian (Higgs et al., 1988).
Devonian-Carboniferous Boundary: Ireland (Higgs et al., 1988; Van der Zwan, 1980; Steeman et al., 1978); England (Dolby and Neves, 1970).

Cristatisporites menendezii (Menéndez and Azcuy) Playford 1978
Figures 1.15, 2.1-2

Description. Spores radial, trilete, cingulizonate, amb circular, subcircular to rounded subtriangular. Laesurae straight, length three-quarters of spore radius, accompanied by lips (0.8-1 μm wide at base and 2-3.5 μm high). Proximal surface, distal surface and equatorial region, including the cingulum, ornamented by biform elements (3-4 μm wide at base and 2-5 μm high), basally fused in groups. Each element is composed by a verrucae with a circular base and acuminate apex; in poorly preserved specimens the apex may be absent.
Dimensions. Equatorial diameter: 47-52 μm (7 specimens).
Comparisons. As noted above, the species most comparable to Cristatisporites menendezii is C. matthewsii, but it is distinguished by the presence of sculptural elements which are only ocasionally basally fused. Cristatisporites spinosus is distinguished by its spinose sculpture. Cristatisporites inordinatus has a sculpture composed of more regularly distributed spinae, coni and galeae.
Previous records. Lower Carboniferous: Australia, Viséan (Playford and Satterthwait, 1988); Ireland, Tournaisian (Higgs et al., 1988).
Upper Carboniferous: Argentina, Paganzo Basin, Agua Colorada Formation (Menéndez and González Amicón, 1979; Gutierrez, 1988; Limarino and Césari, 1988; Vergel et al., 1993), Lagares Formation (Menéndez and Azcuy, 1972), Malanzán Formation (Azcuy, 1975), Santa Máxima Formation (Ottone, 1989), Tupe Formation (Césari, 1985; Ottone and Azcuy, 1990); San Rafael Basin, El Imperial Formation (García, 1995); Chacoparaná Basin (Vergel, 1993); Tarija Basin, Macharetí and Mandiyutí Group (di Pasquo, 2003); Brazil (Souza et al., 1993, 1997; Souza, 1997, 2006).

Cristatisporites pseudozonatus (Lele and Makada) Jones and Truswell 1992
Figures 2.6-7

Description. Spores radial, trilete, cingulicavate, amb subcircular to rounded triangular. Laesurae straight to slightly sinuous, length three-quarters of spore radius, accompanied by lips of 1.5-2 μm high and 0.8-1 μm wide. Intexine usually distinct, thin, laevigate. Proximal surface laevigate, distal surface bearing coni (1.5-4 μm high and 1-2 μm wide at base), fused in groups, each sculptural element ends apically in a slender spine, which may be absent by poor preservation. Sculptural elements usually fused basally in groups forming short and mostly non anastomosing cristae. Zona about 1/5 of spore radius.
Dimensions. Equatorial diameter: 52 (63) 75 μm (13 specimens).
Comparisons. The specimens described here possess smaller diameters than those originally studied by Lele and Makada (1972), but are very similar to the specimens included in Cristatisporites pseudozonatus by other authors (as in Jones and Truswell, 1992). Cristatisporites indolatus Playford and Satterthwait 1988 has a more densely distributed biform distal sculpture. Cristatisporites kuttungensis Playford and Helby 1968 differs by possessing a sculpture composed by coni and spinae.
Previous records. Upper Carboniferous: Australia (Price, 1983; Powis, 1984; Jones and Truswell, 1992).
Lower Permian: India (Lele and Makada, 1972); Australia, Arckaringa Basin (Gilby and Foster, 1988); Canning Basin (Foster and Waterhouse, 1988); Collie Basin (Backhouse, 1988, 1991).

Genus Densosporites (Berry) Butterworth et al. 1964

Type species. Densosporites covensis Berry 1937.

Densosporites scalabrinii sp. nov.
Figures 1.16-18

Holotype. BA Pal BA Pal 5773-1: R27/3, figure 16-17.

Diagnosis. Spores radial, trilete, cavate, cingulate. Amb subcircular to rounded triangular. Laesurae straight, extending to equator of spore radius, accompanied by thin lips. Cingulum distinct, about 5-8 μm wide. Proximal surface laevigate, distal surface including the cingulum ornamented with densely distributed sharp apex coni, frequently fused into short cristae which may form an irregular reticulum.
Dimensions. Equatorial diameter: 46 (52) 62 μm, diameter of intexinal body: 30 (38) 48 μm (29 specimens).
Type locality and stratigraphic horizon. La Cortadera Creek, San Juan Province, Argentina. Cortaderas Formation, Viséan.
Comparisons. Densosporites sp. A (Azcuy, 1975) is similar to the specimens here described, but its sculptural elements are sparsely distributed and not basally fused. Densosporites spitsbergensis Playford 1963 differs in having larger spinae. Furthermore, this species has smaller and more sparsely distributed spinae in the equatorial cingulum. Densosporites brevispinosus Hoffmeister et al. 1955 and Densosporites spinifer Hoffmeister et al. 1988 possess spinae only in the equatorial region, and grana in the distal surface.

Genus Indotriradites Tiwari emend. Foster 1979

Type species. Indotriradites korbaensis Tiwari 1964.

Comments. Recently, Azcuy and di Pasquo (2005) studied Peruvian assemblages, and emended the genus Kraeuselisporites, interpreting that this morphotaxon would be able to include both acavate and cavate spores, and relegating the status of Indotriradites to a junior synonymous of Kraeuselisporites. It is considered more appropriate Scheuring`s emendation, based on the type material of the Triasssic genus Kraeuselisporites (Scheuring, 1974), which includes only acavate spores. Therefore, the generic distinction between Indotriradites and Krauselisporites is here considered valid, as in Foster (1979), Playford (1991) and Higgs (1996), among others.

Indotriradites tedantus (Playford and Satterthwait) Playford 1991
Figure 2.10

Description. Spores radial, trilete, cavate, zonate. Amb subcircular to rounded triangular. Laesurae straight, length 3/4 of spore radius, accompanied by thin lips. Proximal surface laevigate, distal surface ornamented with coni and spinae (up to 5 μm high and 1.5-3 μm wide at base), sculptural elements biform, with a bulbous base. Zona about 10-11 μm wide, strongly indented by the projection of baculae that compose the sculpture.
Dimensions. Equatorial diameter: 48-66 μm (3 specimens).
Comparisons. Kraeuselisporites kuttungensis Playford and Helby 1968 differs by its more sparsely distributed and larger sculpture.
Previous records. Lower Carboniferous: Australia, Viséan (Playford and Satterthwait, 1988); Brazil, Viséan (Melo and Loboziak, 2000).

Indotriradites variabilis Pérez Loinaze 2005
Figures 2.14-15

Dimensions. Equatorial diameter: 96 (118) 180 μm (59 specimens).
Comparisons. Indotrirradites dolianitii Loboziak et al.
1999 has a smaller diameter and posseses larger and more sparsely distributed sculptural elements, and often a folded zona. Indotrirradites daemonii Loboziak et al. 1999 differs by its smaller sculpture and its zona with radial folds.
Previous records. Lower Carboniferous: Argentina, Río Blanco Basin, Malimán Formation (Rodríguez Amenabar et al., 2003; Pérez Loinaze, 2005), Cortaderas Formation (Pérez Loinaze, 2005); Bolivia (Azcuy and Ottone, 1987).
Devonian: Argentina, (upper Givetian- lower Frasnian; Ottone, 1996); Bolivia (upper Givetianlower Frasnian; Ottone and Rossello, 1996).

Indotriradites volkheimeri Azcuy 1975 comb. nov.
Figures 2.11

1975 Kraeuselisporites volkheimeri Azcuy 1975, page 131, figs. 155- 158.

Description. Spores radial, trilete, cavate, zonate, amb subcircular to rounded triangular. Laesurae straight, extending to equator of spore radius, accompanied by thin lips. Proximal surface laevigate, distal surface ornamented with grana, coni and occasional biform sculptural elements (1.5-3 μm high and wide at base); spinae concentrated in equatorial region of body and rarely on the zona (2-7 μm high and 1-2 μm wide at base). Zona about 8-12 μm wide.
Dimensions. Equatorial diameter: 52-70 μm (8 specimens).
Comparisons. The specimens described here have occasionally biform elements, but display the rest of the characteristic features of this species. The absence of apical projections may be the result of a preservational artifact. According to the above comments about Indotriradites and being this species cavate, it is here combined to this genus.
Previous records. Upper Carboniferous: Argentina, Paganzo Basin, Agua Colorada Formation (Gutiérrez, 1988; Limarino and Gutiérrez, 1990); Malanzán Formation (Azcuy, 1975), Santa Máxima Formation (Ottone, 1989); Tarija Basin, Macharetí and Mandiyutí Group (di Pasquo, 2003); Brazil, Paraná Basin (Souza, 2006).

Genus Spinozonotriletes Hacquebard emend. Neves and Owens 1966

Type species. Spinozonotriletes uncatus Hacquebard 1957.

Spinozonotriletes hirsutus Azcuy 1975
Figure 2.5

Description. Spores radial, trilete, cavate, amb subcircular to rounded triangular. Laesurae straight, extending almost to equator, accompanied by thin lips. Proximal surface with reduced sculpture, distal surface ornamented with coni and spinae with rounded or sharp apices (3-5 μm high and 1-3 μm wide at base), closely distributed. Spinae are strongly acute, often surmounted by one minute spine, usually with its apex recurved (4-13 μm high and 2-4 μm wide at the base), and are mostly located in the equator, producing a strong spinose margin. Inner body (intexine) laevigate, outline in polar view approximately conformable with amb.
Dimensions. Equatorial diameter: 68-89 μm, diameter of intexinal body: 42-50 μm (4 specimens).
Comparisons. Cristatisporites inconstans Archangelsky and Gamerro 1979 differs in having more variable sculpture.
Previous records. Upper Carboniferous: Argentina, Paganzo Basin, Agua Colorada Formation (Limarino et al., 1984; Gutiérrez, 1988; Vergel and Luna, 1992); Malanzán Formation (Azcuy, 1975); Tarija Basin, Macharetí and Mandiyutí Group (di Pasquo, 2003).

Genus Vallatisporites (Hacquebard) Sullivan 1964

Type species. Vallatisporites vallatus Hacquebard 1957.

Vallatisporites sp. cf. V. ciliaris (Luber) Sullivan 1964
Figure 3.10

Figure 3. 1, Grandispora sp. cf. G. spiculifera Playford 1976, BA Pal 5760-5: W53/2; 2-3, Vallatisporites sp. 2; 2, BA Pal 5762-4: X49/1; 3, Ba Pal 5761-4: P33/4; 4, Vallatisporites sp. 1, Ba Pal 5761-5: Z31/2; 5, Archaeozonotriletes intrastricatus Playford 1971, BA Pal 5749- 2: L31/1; 6-7, Colatisporites decorus (Bharadwaj and Venkatachala) Williams in Neves et al. 1973; 6, BA Pal 5775-4: R50/3; 7, BA Pal 5775-4: V39/4; 8, Grandispora debilis Playford 1971, BA Pal 5741-2: W27/3; 9, Auroraspora macra Hoffmeister et al. 1955; BA Pal 5746- 2: M37/4; 10, Vallatisporites sp. cf. V. ciliaris Sullivan 1975, BA Pal 5760-5: S54/2; 11, Auroraspora macra, BA Pal 5741-1: W36/3; 12, Grandispora sp., BA Pal 5739-2: W30/0; 13, Grandispora debilis, BA Pal 5757-7: V34/3; 14, Schulzospora sp. cf S. elongata Hoffmeister et al. 1955, BA Pal 5760-1: J29/2; 15, Rugospora australiensis Jones and Truswell 1992, BA Pal 5778-2: E58/3; 16, Rugospora australiensis Jones and Truswell 1992, BA Pal 5778-2: D51/3; 17, Rugospora australiensis, MEB. Scale bar: 20 μm / escala gráfica: 20 μm.

Description. Spores radial, trilete, cavate, zonate. Amb rounded subtriangular. Laesurae straight to slightly sinuous, extending to the equator of the spore, accompanied by thin lips. Exine bilayered, intexine thin, outline in polar view approximately conformable with amb. Proximal surface laevigate, distal surface bearing coni and spinae, sparsely distributed (2-5 μm high and 1-2 μm wide at base). Zona translucent, about 1/3 of spore radius, with a vacuolated ring in the inner margin. An equatorial thickening of approximately 1 μm ornamented with occasional coni up to 3 μm high is present in the outer third of the zona.
Dimensions. Equatorial diameter: 52 μm (1 specimen).
Comparisons. The specimen here described possesses all the characteristics of this species but, due to poor preservation, its specific assignment is made tentatively.
Playford and McGregor (1993) proposed the new species Vallatisporites drybrookensis, to include the specimens of Vallatisporites ciliaris described by Sullivan (1964) and Hacquebard (1957), leaving in V. ciliaris (Luber) Sullivan the original material described by Luber in Luber and Waltz (1938) as Zonotriletes ciliaris and the specimens of Vallatisporites ciliaris studied by Pokrovskaya (1966).
The new species proposed by Playford and McGregor (1993) differs from Zonotriletes ciliaris Luber (in Luber and Waltz, 1938) and the Argentinian and Brazilian specimens referred to V. ciliaris (including the specimen of Cortaderas Formation) in having larger sculpture, mostly composed by coni and galeae. However, a revision of Luber's specimens is needed, before deciding if they are conspecific with those of Argentina and Brazil.

Vallatisporites sp. 1
Figures 2.13, 3.4

Description. Spores radial, trilete, cavate, zonate. Amb subcircular to rounded triangular. Laesurae straight to slightly sinuous, extending to equator of spore radius, accompanied by thin lips (1.5 μm high and 1μm wide). Exine two layered, intexine thin, outline approximately conformable with amb in polar view. Proximal surface laevigate; distal surface ornamented with grana and coni (1-1.5 μm high and wide), often basally fused forming short cristae. Zona narrow, about 3-8 μm wide, translucent, with a vacuolated ring in the inner margin, laevigate with exception of the equatorial margin which is ornamented with sharp or rounded coni up to 2 μm.
Dimensions. Equatorial diameter: 38-68 μm (8 specimens).
Comparisons. Vallatisporites preanthoides Braman and Hills 1992 possesses sculpture composed of larger verrrucae and coni. Vallatisporites microgalearis Hibbert and Lacey 1969 has a distal surface ornamented with verrucae and galeae.

Vallatisporites sp. 2
Figures 3.2-3

Description. Spores radial, trilete, cavate, zonate. Amb subcircular to rounded triangular. Laesurae straight to slightly sinuous, extending to equator of spore radius, accompanied by thin lips. Exine bilayered, intexine thin, outline approximately conformable with amb in polar view. Proximal surface laevigate, distal surface ornamented with scattered grana up to 1 μm high. Zona 10-14 μm wide, with a equatorial thickness of 1.5-2 μm, laevigate with the exception of equatorial margin which is ornamented with rounded apex small grana (up to 1 μm in diameter).
Dimensions. Equatorial diameter: 46-60 μm (7 specimens).
Comparisons. The diagnostic features of the specimens assigned to Vallatisporites sp. 2 are absent in other species previously described for this genus. Vallatisporites ciliaris and the specimens here described as Vallatisporites sp. cf. V. ciliaris are distinguishable in having larger and closely distributed spinae and grana.

Infraturma PATINATI Butterworth and Williams emend. Smith and Butterworth 1967

Genus Archaeozonotriletes Naumova emend. Allen 1965

Type species. Archaeozonotriletes variabilis Naumova 1953.

Archaeozonotriletes intrastricatus Playford 1971
Figure 3.5

Description. Spore radial, trilete, amb rounded triangular. Laesurae straight, with lips, length three-quarters of spore radius. Exine of contact areas ornamented with thin, radially oriented, slightly irregular rugulae. Distal and equatorial exine thick, about 4 μm overall, laevigate. The exine appears double layered, but both layers are closely adpressed.
Dimensions. Equatorial diameter: 53 μm (1 specimen).
Comparisons. Punctatisporites perfrugalis Playford 1978 differs because of its simple laesurae and thinner exine (1.3-2 μm). Reticulatisporites rugulatus Riegel 1973 has a thinner exine.
Previous records. Lower Carboniferous: Australia, Viséan (Playford, 1971; Playford and Satterthwait, 1988).

Infraturma MONOPSEUDOSACCITI Smith and Butterworth 1967

Genus Auroraspora Hoffmeister et al. 1955

Type species. Auroraspora solisortus Hoffmeister et al. 1955.

Auroraspora macra Sullivan 1968
Figures 3.9, 11

Description. Spores radial, trilete, cavate, amb circular to subcircular. Laesurae straight, length threequarters of spore radius, accompanied by thin lips. Exine of contact areas laevigate, distal surface and equatorial region of the exine ornamented with fine grana. Intexine distinct, laevigate, about 4/5 of the total spore diameter, outline in polar view approximately conformable with amb. Exine 0.8 μm thick, compression folds common.
Dimensions. Equatorial diameter: 37 (50) 53 μm, diameter of intexinal body: 36 (42) 45 μm (41 specimens).
Comparisons. Auroraspora solisortus Hoffmeister et al. 1955 possesses a larger diameter and an exoexine usually folded with a radial orientation.
Previous records. Lower Carboniferous: Australia (Playford, 1971; Playford, 1978; Van der Zwan, 1981; Playford and Satterthwait, 1988); Canada (Utting, 1987a and 1987b, Utting et al., 1989); Colombia, Llanos Oriental Basin (Dueñas and Césari, 2006); Scotland (Neves and Ioannides, 1974); Tournaisian (Sullivan, 1968); England (Turner and Spinner, 1988); Ireland (Owens et al., 1977; Higgs et al., 1988); Libya (Massa et al., 1980); Poland, upper Viséan (Stempién and Turnau, 1988; Filipiak, 2004); Peru, Viséan (Azcuy and di Pasquo, 2005); USA. (Clayton et al., 1998).
Devonian-Carboniferous Boundary: Germany (Higgs and Streel, 1984); Bolivia (Azcuy and Ottone, 1987); Belgium (Loboziak et al., 1994); China (Gao, 1983, 1984); Ireland (Higgs et al., , 1988); Ghana (Atta Peters and Yorke, 2003); Lybia (Coquel and Moreau- Benoit, 1986); Turkey (Higgs et al., 2002).
Upper Devonian-Lower Carboniferous: Africa (Massa et al., 1980; Marhoumi, 1984); Germany (Higgs and Streel, 1984); Australia (Playford, 1976); Brazil (Melo and Loboziak, 2003); Ireland (Clayton et al., 1982); West Europe and Poland (Clayton et al., 1977, Turnau, 1978, 1979); U.S.A. (Wilson et al., 1984).
Upper Devonian-Upper Carboniferous: Africa (Coquel and Moreau-Benoit, 1986).
Lower Carboniferous-Upper Carboniferous Boundary: Saudi Arabia (Clayton, 1995).

Genus Grandispora Hoffmeister et al. emend. Neves and Owens 1966

Type species. Grandispora spinosa Hoffmeister et al. 1955.

Grandispora debilis Playford 1971
Figures 3.8, 13

Description. Spores radial, trilete, cavate. Amb subcircular to rounded triangular. Laesurae straight to slightly sinuous, extending approximately to the intexine margin, in some specimens ending in an imperfect curvaturae, often accompanied by irregular exinal folds. Exine of contact areas laevigate, and distal surface and equatorial region ornamented with small grana and coni (0.5-1.2 μm high and wide), discrete, closely distributed, 0.2-4 μm apart. Intexine distinct, laevigate, about 3/4 to 4/5 of the total spore diameter, outline in polar view approximately conformable with amb. Exine thin, about 0.8-1 μm thick, compression folds common.
Dimensions. Equatorial diameter: total 41 (50) 60 μm, diameter of intexinal body: 33 (42) 50 μm (29 specimens).
Comparisons. Grandispora maculosa Playford and Helby 1968 differs in having sculpture composed of spinae and some coni. Grandispora inculta Allen 1965 possesses a smaller intexinal body, and the exoexine is ornamented with coni of 1-2 μm high. Grandispora notensis Playford 1971 has a sculpture of coni and spinae, and a larger diameter. Grandispora spiculifera Playford 1976 is distinguished by its spinose sculpture.
Previous records. Lower Carboniferous: Australia, Viséan (Playford, 1971; Playford and Satterthwait, 1988); Peru, Viséan (Azcuy and di Pasquo, 2005).

Grandispora sp. cf. G. spiculifera Playford 1976
Figure 3.1

Description. Spores radial, trilete, cavate. Amb subcircular to rounded triangular. Laesurae straight to slightly sinuous, extending to intexine margin, accompanied by thin lips, and irregular exinal folds. Exine of contact areas laevigate, distal surface and equatorial exine ornamented with closely distributed spinae (0.5-1.5 μm high and wide) and occasional coni. Intexine distinct, laevigate, outline approximately conformable with amb in polar view. Exine thin, about 0.8-1 μm thick.
Dimensions. Equatorial diameter: 52-75 μm, diameter of intexinal body: 47-54 μm (4 specimens).
Comparisons. Due to the poor preservation of the specimens here studied, the specific assignment is tentative.

Grandispora sp.
Figure 3.12

Description. Spores radial, trilete, cavate. Amb subcircular to rounded triangular. Laesurae straight, extending to equator of spore radius, accompanied by thin lips (1.5-2 μm high and 0.8-1 μm wide). Exine of contact areas laevigate, distal surface and equatorial region exine ornamented with closely distributed rounded or sharp coni, grana and verrucae (0.8-2 μm high and wide). Intexine distinct, laevigate, about 3/4 of the total spore diameter, outline approximately conformable with amb in polar view. Exine thin, about 1-1.2 μm thick.
Dimensions. Equatorial diameter: 38-51 μm, diameter of intexinal body: 30-36 μm (4 specimens).
Comparisons. Grandispora debilis Playford 1971 possesses sculpture composed mainly of coni. Grandispora notensis Playford 1971 differs by its larger diameter and less variable sculptural elements.

Genus Spelaeotriletes Neves and Owens 1966

Type species. Spelaeotriletes triangulus Neves and Owens 1966.

Spelaeotriletes sp. cf. S. pretiosus (Playford) Utting 1987a
Figures 2.8, 12

Description. Spores radial, trilete, cavate, amb subcircular to rounded triangular. Laesurae straight, extending to equator of spore radius, accompanied by thin lips (1-1.5 μm high and 0.8-1 μm wide). Exine of contact areas laevigate, distal surface and equatorial region ornamented with grana, coni and blunt elements (0.5-4 μm wide at base and 0.8-1.2 μm high), apart about 0.2-1.5 μm apart. Intexine rarely distinct, laevigate, approximately 4/5 or more of the total spore diameter, outline approximately conformable with amb in polar view. Exine thin, about 1-1.5 μm thick.
Dimensions. Equatorial diameter: 38-51 μm, diameter of intexinal body: 30-36 μm (4 specimens).
Comparisons. The specimens studied here are similar to Spelaeotriletes pretiosus, but may be distinguished by their smaller diameter and sculpture. Spelaeotriletes pretiosus var. windsorensis Utting 1987a possesses more varied and more widely spaced sculptural elements.

Genus Rugospora Neves and Owens emend. Turnau 1978

Type species. Rugospora corporata Neves and Owens 1966.

Rugospora australiensis (Playford and Helby) Jones and Truswell 1992
Figures 3.15-17

Description. Spores radial, trilete, pseudosaccate, amb circular to subcircular. Laesurae simple, straight, length three-quarters of spore radius, often open. Intexine distinct, laevigate, about 0.8-0.9 of the total spore diameter, outline in polar view approximately conformable with amb. Exoexine strongly microfolded and rugulate or microgranulate.
Dimensions. Equatorial diameter: 64 (74) 86 μm; diameter of intexinal body: 50 (61) 76 μm (43 specimens).
Comparisons. The specimens recovered from Cortaderas Formation appear identical to the material originally assigned to Wilsonites australiensis by Playford and Helby (1968) and later reassigned by Jones and Truswell to the genus Rugospora.
The specimens illustated by di Pasquo et al. 2001 as R. australiensis apparently lack the strongly folded exine, which it is characteristic of this species.
Previous records. Upper Carboniferous: Argentina, Tarija Basin, Macharetí and Mandiyutí Group (di Pasquo, 2003); Australia (Playford and Helby, 1968; Jones and Truswell, 1992); Westphalian B-D (Powis, 1984).

Genus Colatisporites Williams in Neves et al. 1973

Type species. Colatisporites decorus (Bharadwaj and Venkatachala) Williams in Neves et al. 1973.

Colatisporites decorus (Bharadwaj and Venkatachala) Williams in Neves et al. 1973
Figures 3.6-7

Description. Spores radial, trilete, cavate, amb circular to subcircular. Laesurae simple, straight, length three-quarters of spore radius, often open. Intexine distinct, laevigate, outline approximately conformable with amb in polar view. Exine of contact areas laevigate, distal surface and equatorial region exine micropunctate to microgranulate.
Dimensions. Equatorial diameter: 55 (68) 84μm; diameter of intexinal body: 46 (58) 77 μm (11 specimens).

Previous records. Lower Carboniferous: Alaska (Ravn, 1991); Brazil (Melo and Loboziak, 2003); Canada (Utting, 1987a and b, Utting et al., 1989); Colombia, Llanos Oriental Basin (Dueñas and Césari, 2006); Scotland (Neves et al., 1973; Neves and Ioannides, 1974); Ireland, Tournaisian (Higgs et al., 1988); Libya (Coquel and Moreau-Benoit, 1986); Spitsbergen (Bharadwaj and Venkatachala, 1962); Peru, Viséan (Azcuy and di Pasquo, 2005); Poland, Tournaisian (Filipiak, 2004);
Devonian-Carboniferous boundary: Belgium (Loboziak et al., 1994);
Lower Carboniferous-Upper Carboniferous: Saudi Arabia (Clayton, 1995).

Genus Schulzospora Kosanke 1950

Type species. Schulzospora rara Kosanke 1950.

Schulzospora sp. cf. S. elongata Hoffmeister et al. 1955
Figure 3.14

Description. Spore radial, trilete, cavate, amb elliptical to oval. Laesura indistinct. Margin of spore body well defined, amb oval, outline in polar view approximately conformable with amb. Exoexine 2 μm thick, laevigate. Exine of contact areas laevigate, with the distal surface and equatorial region micropunctate a microgranulate.
Dimensions. Total long diameter: 82 μm; body long: 53 μm (1 specimen).
Comparisons. The only specimen available is slightly folded overself but its relatively thin exine and cavate condition is well observed on left side (see figure 3.14). Schulzospora elongata Hoffmeister et al. 1955 resembles the specimens here described by its elliptical shape, but differs by its clearly visible trilete laesurae. Schulzospora campyloptera (Waltz) Hoffmeister et al. 1955 and Schulzospora ocellata (Horst) Potonié and Kremp 1956 both have an oval to subcircular amb.

Anterturma MEGASPORITES Pant 1962
Turma Triletes Potonié and Kremp 1954
Suprasubturma AZONOTRILETES Luber 1935

Genus Calamospora Schopf et al. 1944

?Calamospora sp.
Figures 4.3-5

Figure 4. 1-2, Bankisporites sp., 1, BA Pal 5763-3: R47/4; 2, BA Pal 5763-3: R47/4, detail of sculpture / detalle de la escultura; 3-5, ?Calamospora sp., 3, MEB; 4, Ba Pal 5733-2: F49/3; 5, BA Pal 5771-3: K39/1. Scale bar: 100 μm / escala gráfica: 100 μm

Description. Megaspores with a circular to subcircular amb. Exine laevigate, 0.8-2 μm thick, strongly folded.
Dimensions. 226-403 μm (6 specimens).

Comparisons. Calamospora laevigata (Ibrahim) Schopf, Wilson and Bentall 1944 possesses lesser folded exine. Laevigatisporites plicatus (Dijkstra) Lachkar 1978 differs by its larger diameter and radially oriented folded exine. ?Banksisporites sinuosus Glasspool 2003 resembles the specimens here described, but can be distinguished by its trilete laesurae thickened into a bulbous structure.

Genus Banksisporites Dettmann emend. Glasspool 2003

Banksisporites sp.
Figures 4.1-2

Description. Megaspores with a circular to subcircular amb. Exine sculptured with coni and grana up to 2 μm wide and high, sparcely distributed. Exine about 5-10 μm thick.
Dimensions. 260-450 μm (3 specimens).
Comparisons. The genus Banksisporites includes laevigate or sculptured megaspores with an ornament of grana or verrucae. The contact areas are elevated or with little relief, and may develop pronounced to indistinct arcuate ridges. According to Glasspool (2003), the laesurae may finish in curvaturae, which sometimes are not determinable. The genus Biharisporites Potonié emend. Glasspool 2003 differs by including megaspores with perfect curvaturae.

Conclusions

Characteristics of the associations

The vertical distribution of the species identified in the five facies associations proposed from the Cortaderas Formation is shown in figure 5. Assemblages recovered from FA1 and FA5 are more diverse than those from FA2, 3 and 4. This may be an artifact, since many specimens of those sections cannot be identified due to their poor preservation. Moreover, FA 2, 3 and 4 are dominated by sandstones, and few samples were recovered from them, whereas FA1 and 5 are more fossiliferous. On the other hand, the FA1 and 5 show fundamental differences in composition and diversity.

Figure 5. Vertical distribution of palynomorph species identified from the five facies associations in the Cortaderas Formation / distribución vertical de los palinomorfos identificados en las cinco asociaciones de facies de la Formación Cortaderas.

The microflora recovered from the FA1 shows low to moderate diversity, and is dominated by species of the genus Verrucosisporites, including V. baccatus, V. congestus, V. cortaderensis, V. incompositus, V. perbrevis, V. papulosus, V. sp. cf. V. nitidus, and V. spp. Several species such as Cristatisporites pseudozonatus, Cyclogranisporites sp. cf. C. firmus, Ductilispora corrugata, D. longitudinalis, Verrucosisporites congestus, V. cortaderensis, V. sp. cf. V. nitidus, V. perbrevis sp. nov. and V. papulosus are recorded only in this facies association.
In the FA2, 3 and 4, representatives of the genus Verrucosisporites are scarce and only few taxa can be positively identified (fig. 5), including Apiculiretusispora microseta, Colatisporites decorus, Crassyspora trychera, Indotriradites variabilis, Reticulatisporites magnidictyus, Rugospora australiensis and Verrucosisporites quasigobbettii.
FA 5 represents the upper levels of the Cortaderas Formation, where the genera Retusotriletes and Punctatisporites are the dominant taxa. This facies displays the greatest diversity of taxa in the unit, with several typical species, including Anapiculatisporites amplus, A. austrinus, A. kekiktukensis, A. semisentus, A. exigus, A. expolitus, Auroraspora macra, Bacaudaspora submarginata, Crassipora kosankei, Cristatisporites matthewsii, C. inordinatus, C. menendezii, Punctatisporites irrasus, P. minutus, P. planus and Retusotriletes anfractus. In the uppermost levels of this facies (the last 100 metres), characteristic species of the Upper Carboniferous of Argentina and Brazil including Indotriradites volkheimeri, Spinozonotriletes hirsutus, Raistrickia paganciana, and R. rotunda, among others, can be recognized.

Biostratigraphic conclusions

In the palynological content of the five facies associations in the Cortaderas Formation some differences can be observed, but in part these may be attributed to preservational or different palaeoenvironmental conditions. Assemblages from FA1, 2, 3, 4 and the basal and intermediate levels of FA5 show some differences, which may be the result of dissimilar depositional environments. In these facies, species exclusively recorded in Viséan sediments may be recognized (figure 5-6), including Apiculiretusispora microseta, A. kekiktukensis, A. semisentus, Archaeozonotriletes intrastricatus, Cristatisporites indolatus, Grandispora debilis and Verrucosisporites baccatus. In addition, several long-ranging species can be identified, including Crassispora trychera, Colatisporites decorus, Verrucosisporites congestus, Bascaudaspora collicula. Also are present species of potential stratigraphic relevance, such as Reticulatisporites magnidictyus, Verrucosisporites quasigobbettii and Rugospora australiensis (fig. 5- 6), originally described from the Australian Italia Road Formation (Playford and Helby, 1968), and referred to the Grandispora maculosa Assemblage. This Australian biozona was constrained in age by SHRIMP Zircon dates to the Late Viséan (Roberts et al., 1995). On the other hand, the absence of monosaccate pollen grains suggests that this facies is not younger than Viséan, since the first records of these palynomorphs occur worldwide during the Serpukhovian (Brugman et al., 1985; Loboziak and Clayton, 1988; Clayton et al., 1990; Zhu, 1993; Clayton, 1995).

Figure 6. Chronostratigraphic distribution of selected species recognized in the Cortaderas Formation with previous worldwide stratigraphical records / distribución cronoestratigráfica de las especies seleccionadas reconocidas en la Formación Cortaderas con registros estratigráficos mundiales previos. Data from / datos de: Smith and Butterworth 1967; Playford and Helby, 1968; Playford, 1971, 1976, 1978; Playford and Powis, 1979; Playford and Satterthwait, 1985, 1986, 1988; Coquel and Moreau-Benoît, 1986; Higgs et al., 1988; Utting et al., 1989; Playford, 1991; Ravn, 1991; Jones and Truswell, 1992; Turnau et al. 1994; Clayton et al. 1998; Melo and Loboziak, 2000; Souza, 2006; Dino and Playford, 2002; di Pasquo et al., 2003; Fasolo et al., 2006; Melo and Loboziak, 2003; Azcuy and di Pasquo, 2005; Dueñas and Césari, 2006.

The samples collected in the uppermost level (BA Pal 5759/60 and 5762/64) in FA5 show a compositional change by the presence of spores typical of the Upper Carboniferous of Argentina and Brazil, along with the previously cited species, although pollen grains are still absent (figs. 5-6). The appearances of Upper Carboniferous spores in these strata suggest a younger age for these upper assemblages. New data from other localities are needed to confirm these compositional differences among the assemblages obtained throughout the Cortaderas Formation.
All this information allowed Pérez Loinaze (2007) to propose the new Interval Biozone Reticulatisporites magnidictyus-Verrucosisporites quasigobbettii (MQ) for the Late Viséan of Argentina.

Acknowledgments

Thanks are due to S.N. Césari for her critical comments, useful suggestions and invaluable help during all the development of this work, to O. Limarino for critical reading on early drafts of the manuscript and providing valuable advice, to E. Vera for reading the manuscript. Funding for this work was provided by the Agencia Nacional de Promoción Científica y Técnica, PICT 20752.

References

1. Allen, K.C. 1965. Lower and Middle Devonian spores of North and Central Vestspitsbergen. Palaeontology 8: 687-748.        [ Links ]

2. Archangelsky, S. and Gamerro, J.C. 1979. Palinología del Paleozoico superior en el subsuelo de la Cuenca Chacoparanaense, República Argentina. I. Estudio sistemático de los palinomorfos de tres perforaciones de la provincia de Córdoba. Revista Española de Micropaleontología 11: 417-478.        [ Links ]

3. Atta-Peters, D. and Anan-Yorke, R. 2003. Latest Devonian and Early Carboniferous pteridophytic spores from the Sekondi Group of Ghana. Revista Española de Micropaleontología 35: 9-27.        [ Links ]

4. Azcuy, C.L. 1975. Miosporas del Namuriano y Westfaliano de la comarca Malanzán-Loma Larga, provincia de La Rioja, Argentina. II. Descripciones sistemáticas y significado estratigráfico de las microfloras. Ameghiniana 12: 113-163.        [ Links ]

5. Azcuy, C.L. and Ottone, G. 1987. Datos palinológicos de la Formación Retama en la Encañada de Beu, Río Alto Beni (Bolivia). 4º Congreso Latinoamericano de Paleontología (Santa Cruz de la Sierra), Actas 1: 235-249.        [ Links ]

6. Azcuy, C.L. and di Pasquo, M. 2005. Early Carboniferous palynoflora from the Ambo Formation, Pongo de Mainique, Peru. Review of Palaeobotany and Palynology 134: 153-184.        [ Links ]

7. Backhouse, J. 1988. Permian trilete spores from the Collie Basin, Western Australia. Memoir of the Association of Australasian Palaeontologists 5: 53-72.        [ Links ]

8. Backhouse, J. 1991. Permian palynostratigraphy of the Collie Basin, Western Australia. Review of Palaeobotany and Palynology 67: 237-314.        [ Links ]

9. Berry, W. 1937. Spores from the Pennington coal, Rhea County, Tennessee. American Midland Naturalist 18: 155-160.        [ Links ]

10. Bhardwaj, D.C. 1957a. The palynological investigations of the Saar Coals (Part I - Morphography of spore dispersae). Palaeontographica B 101: 73-125.        [ Links ]

11. Bhardwaj, D.C. 1957b. The spore flora of the Velener Schichten (Lower Westphalian D) in the Ruhr Coal Measures. Palaeontographica B 102: 110-138.        [ Links ]

12. Bharadwaj, D.C. and Venkatachala, D.C. 1962. Spore assemblage out of a Lower Carboniferous shale from Spitsbergen. The Palaeobotanist 10: 18-47.        [ Links ]

13. Braman, D.R. and Hills, L.V. 1992. Upper Devonian and Lower Carboniferous miospores, western district of Mackenzie and Yukon Territory, Canada. Palaeontographica Canadiana 8: 1-97.        [ Links ]

14. Brugman, W.A., Eggink, J.W., Loboziak, S. and Visscher, H. 1985. Late Carboniferous-Early Permian (Ghzelian-Artinskian) Palynomorphs. Journal of Micropalaeontology 4: 93-106.        [ Links ]

15. Butterworth, M.A. and Spinner, E. 1967. Lower Carboniferous spores from northwest England. Palaeontology 10: 1-24.        [ Links ]

16. Butterworth, M.A., Jansonius, J., Smith, A.V.H. and Staplin, F.L. 1964. Densosporites (Berry) Potonié and Kremp and related genera. 5º Congrés International de la Stratigraphie et Géologie du Carbonifére (Paris, 1963), Comptes rendus 1: 1049-1057.        [ Links ]

17. Byvscheva, T.V. 1980. Zonal spore assemblages from upper Tournaisian deposits of eastern districts of the Russian Plate. In Palinological Research in Proterozic and Phanerozoic Oil and Gas Bearing Regions of the URSS. In: T.V. Byvscheva, (ed.), Trudy Vsesoiuznogo Nauchno Issledovatel ´Skogo Geologoraz Vedochnogo Neftianogo Instituf (VNIGRI) 217: 53-81.        [ Links ]

18. Césari, S.N. 1985. Palinología de la Formación Tupe (Paleozoico Superior), sierra de Maz, provincia de La Rioja. I. Ameghiniana 21: 85-102.        [ Links ]

19. Césari, S. and Limarino, C. 1993. Palinomorfos Eocarboníferos en la Formación Cortaderas, provincia de San Juan, Argentina. 8º Simposio Argentino de Paleobotanica y Palinologia (Corrientes), Publicación Especial de la Asociación Paleontológica Argentina 2:45-48.        [ Links ]

20. Clayton, G. 1995. Carboniferous miospore and pollen assemblages from the Kingdom of Saudi Arabia. Review of Palaeobotany and Palynology 89: 115- 123.        [ Links ]

21. Clayton, G., Coquel, R., Doubinger, J., Gueinn, K.J., Loboziak, S., Owens, B. and Streel, M. 1977. Carboniferous miospores of western Europe: illustration and zonation. Mededelingen Rijks Geologische Dienst 29: 1 -71.        [ Links ]

22. Clayton, G., Keegan, J. B. and Sevastopulo, G. D. 1982. Palynology and stratigraphy of Late Devonian and Early Carboniferous rocks, Ardmore, County Waterford, Ireland. Pollen et Spores 24: 511 -521.        [ Links ]

23. Clayton, G., Loboziak, S., Streel, M., Turnau, E. and Utting, J. 1990. Palynological events in the Mississippian (Lower Carboniferous) of Europe, North Africa and North America. Courier Forschungsinstitut Senckenberg 130: 79-84.        [ Links ]

24. Clayton, G., Manger, W.L. and Owens, B. 1998. Mississippian (Lower Carboniferous) miospores from the Cuyahoga and Logan Formations of northeastern Ohio, USA. Journal of Micropalaeontology 17: 183-191.        [ Links ]

25. Coquel, R. and Moreau-Benoit, A. 1986. Les spores des séries struniennes et tournaisienes de Lybye Occidentale. Revue de Micropaléontologie 29: 17-43.        [ Links ]

26. Coquel, R. and Rodríguez, R. 1995. Étude palinologique du Cantabrien et du Barruélien dans les régions de Barruelo et de Tejerina (nord-ouest Espagne). Sciences Geologique Bulletin 48: 49-61.        [ Links ]

27. di Pasquo, M.M., 1999. [Palinología, Bioestratigrafía y Correlación de las asociaciones presentes en los Grupos Macharetí y Mandiyutí, Neopaleozoico de la Cuenca Tarija, provincia de Salta, Argentina. Ph. D thesis, Universidad de Buenos Aires, Argentina, 480 pp. Unpublished.].        [ Links ]

28. di Pasquo, M.M. 2003. Avances sobre palinología, bioestratigrafía y correlación de las asociaciones presentes en los Grupos Macharetí y Mandiyutí, Neopaleozoico de la Cuenca Tarija, provincia de Salta, Argentina. Ameghiniana 40: 3-32.        [ Links ]

29. di Pasquo, M.M., Azcuy, C.L. and Starck, D. 2001. Palinología de la Formación San Telmo en la sierra San Antonio, provincia de Salta, Argentina. Ameghiniana 38: 85-98.        [ Links ]

30. Dolby G. and Neves R. 1970. Palynological evidence concerning the Devonian-Carboniferous boundary in the Mendips, England. 6º Congrès international de stratigraphie et de géologie du carbonifère (Sheffield, 1967), Comptes Rendus 2:631-646.        [ Links ]

31. Dueñas, H. and Césari, S.N. 2006. Palynological evidence of Early Carboniferous sedimentation in the Llanos Orientales Basin, Colombia. Review of Palaeobotany and Palynology 168: 31-42.        [ Links ]

32. Fassolo, Z., Vergel, M del M., Oller, J. and Azcuy, C. 2006. Nuevos datos palinológicos de la Formación Kaka (Eoserpukhoviano) en la encañada de Beu, Subandino norte de Bolivia. Revista Brazileira de Paleontologia 9: 56-62.        [ Links ]

33. Felix, C.J. and Burbridge, P.P. 1967. Palynology of the Springer Formation of Southern Oklahoma, USA. Palaeontology 10: 349- 425.        [ Links ]

34. Filipiak, P. 2004. Miospore stratigraphy of Upper Famennian and Lower Carboniferous deposits of the Holy Cross Mountains (central Poland). Review of Palaeobotany and Palynology 128: 291-322.        [ Links ]

35. Foster, C.B. 1979. Permian plant microfossils from the Blair Athol Coal Measures, Baralaba coal Measures, and Basal Rewan Formation of Queenland. Geological Survey of Queenland, Publication 372, Paleontological Paper 45: 1-244.        [ Links ]

36. Foster, C.B. and Waterhouse, J.B. 1988. The Granulatisporites confluens Oppel-zona and Early Permian marine faunas from the Grant Formation on the Barbwire Terrace, Canning Basin, Western Australia. Autralian Journal of Earth Sciences 35: 135- 157.        [ Links ]

37. Gao, L. 1983. The finding of latest Devonian miospores at Nielamu in Tibet and its geological significance. Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau 8: 183-218.        [ Links ]

38. Gao L. 1984. Carboniferous and Early Permian spore assemblages of North China region and the boundary of the Carboniferous and Permian. 12º Congrès international de stratigraphie et de géologie du carbonifère (Madrid), Comptes Rendus 2:409-424        [ Links ]

39. García, G.B. 1995. Palinología de la Formación El Imperial, Palezoico Superior, Cuenca San Rafael, Argentina. Parte I: esporas. Ameghiniana 32: 315-339.        [ Links ]

40. Gilby, A.R. and Foster, C.B. 1988. Early Permian palynology of the Arckaringa Basin, South Australia. Palaeontographica B 209: 167-191.        [ Links ]

41. Glasspool, I.J. 2003. A review of Permian Gondwana megaspores, with particular emphasis on material collected from coals of the Witbank Basin of South Africa and the Sydney Basin of Australia. Review of Palaeobotany and Palynology 124: 227-296.        [ Links ]

42. Gutiérrez, P.R. 1988. [Análisis paleoflorístico, bioestratigráfico y aspectos paleoambientales de la Formación Agua Colorada en el sector sudoriental de la sierra de Famatina, provincia de La Rioja, República Argentina. Ph. D thesis, Universidad de Buenos Aires, Argentina, 850 pp. Unpublished.].        [ Links ]

43. Hacquebard, P.A. 1957. Plants spores in coal from the Horton Group (Mississippian) of Nova Scotia. Micropaleontology 3: 301-324.        [ Links ]

44. Hibbert, F.A. and Lacey, W.S. 1969. Miospores from the Lower Carboniferous Basement Beds in the Menai Straits region, North Wales. Palaeontology 12: 78-83.        [ Links ]

45. Higgs, K.T. 1996. Taxonomic and systematic study of some Tournaisian (Hastarian) spores from Belgium. Review of Palaeobotany and Palynology 93: 269-297.        [ Links ]

46. Higgs, K. and Streel, M. 1984. Spore stratigraphy at the Devonian- Carboniferous boundary in the northern "Rheinisches Schiefergebirge", Germany. Courier Forschungsinstitut Senckenberg 67: 157-179.        [ Links ]

47. Higgs, K.T., Clayton, G. and Keegan, J.B. 1988. Stratigraphic and Systematic Palynology of the Tournaisian Rocks of Ireland. Geological Survey of Ireland, Special Paper 7: 1-93 pp.        [ Links ]

48. Higgs, K.T., Avkhimovitch, V. I., Loboziak, S., Maziane-Serraj, M. Stempien-Salek, M. and Streel, M. 2000. Systematic study and stratigraphic correlation of the Grandispora complex in the Famennian of northwest and eastern Europe. Review of Palaeobotany and Palynology 112: 207-228.        [ Links ]

49. Higgs, K.T., Finucane, D. and Tunbridge, I.P. 2002. Late Devonian and Early Carboniferous microfloras from the Hakkari Province of southeastern Turkey. Review of Palaeobotany and Palynology 118: 141-156.        [ Links ]

50. Hoffmeister, W. S., Staplin, F.L. and Malloy, R.E., 1955. Mississippian plant spores from the Hardinsburg Formation of Illinois and Kentucky. Journal of Palaeontology 29: 372-399.        [ Links ]

51. Jones, M.J. and Truswell, E.M. 1992. Late Carboniferous and Early Permian palynostratigraphy of the Joe Joe Group, southern Galilee Basin, Queensland, and implications for Gondwana stratigraphy. Bureau of Mineral Resources, Geology and Geophysic 13: 143-185.        [ Links ]

52. Kedo, G.I. 1963. Tournaisian spores of Pripyat Depression and their stratigraphical value. Paleontology and Stratigraphy of the Byelorussian S.S.R., Symposium 4, Minsk, Nauka, Tekhnika, 6: 3-120.        [ Links ]

53. Kosanke, R.M. 1950. Pennsylvanian spores of Illinois and their use in correlation. Geological Survey of Illinois, Bulletin 74: 1- 128.        [ Links ]

54. Lachkar, G. 1978. Le bassin houiller Viséen d´Agades (Niger). II : Palynologie Mégaspores. Palynologia 1 : 43-52.        [ Links ]

55. Lele, K.M and Makada, R. 1972. Studies in the Talchir flora of India - 7. Palynology of the Talchir Formation in the Jayanti Coalfield, Bihar. Geophytology 2: 41 - 73.        [ Links ]

56. Lima, M.R. De, Dino, R., and Yokoya, N. 1983. Palinologia de concreçôes calcíferas do Subgrupo Itararé (Neopaleozoico Superior da bacia do Paraná) da regiâo de Araçoiaba da Serra. Annales da Academia Brazileira da Ciençias 55: 195-208.        [ Links ]

57. Limarino C. O. and Césari S. N. 1988. Paleoclimatic significance of the lacustrine Carboniferous deposits in Northwest Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 65: 115-131.        [ Links ]

58. Limarino, C.O. and Césari, S.N. 1992. Reubicación estratigráfica de la Formación Cortaderas y definición del Grupo Angualasto (Carbonífero Inferior, Precordillera de San Juan). Revista de la Asociación Geológica Argentina 47: 61-72.        [ Links ]

59. Limarino, C.O. and Gutiérrez, P.R. 1990. Diamictites in the Agua Colorada Formation (northwestern Argentina): New evidence of Carboniferous glaciation in South America. Journal of South American Earth Sciences 3: 9-20.        [ Links ]

60. Limarino, C., Gutierrez, P. and Césari, S. 1984. Facies lacustres de la Formación Agua Colorada (Paleozoico superior): aspectos sedimentológicos y contenido paleoflorístico. 9º Congreso Geológico Argentino, Actas 5: 324-341.        [ Links ]

61. Loboziak, S. 1971. Les micro et mégaspores de la partie occidentale du bassin houiller du Nord de la France. Palaeontographica B 132: 1-127.        [ Links ]

62. Loboziak, S. and Clayton, G. 1988. The Carboniferous palynostratigraphy of northeast Libya. In: A., El-Arnauti, B., Owens, B., Thusu (eds.), Subsurface Palynostratigraphy of Northeast Libya, Garyounis University Publication Benghazi, 129-149 pp.        [ Links ]

63. Loboziak, S., Coquel, R. and Jachowicz, A. 1976. Stratigraphie du Westphalien d´Europe occidentale et de Pologne á la lumiére des études palinologiques (microspores). Extrait des annales de la Société Géologique du Nord 96: 157-172.        [ Links ]

64. Lobozoiak, S., Melo, J.H.G., Playford., G and Streel, M. 1999. The Indotriradites Morphon, a distinctive group of miospore species from the Lower Carboniferous of Gondwana. Review of Palaeobotany and Palynology 107: 17-22.        [ Links ]

65. Loboziak, S., Streel, M., Dusar, M., Boulvain, F and de Geyter, G. 1994. Late Devonian and early Carboniferous miospores from the Menen Borehole, Namur Synclinorium, Belgium. Review of Palaeobotany and Palynology 80: 55-63.        [ Links ]

66. Luber, A.A. and Waltz, J.E., 1938. Classification and stratigraphic value of some spores of Carboniferous coal deposits in the U.S.S.R. Trudy Tsentral'nogo Nauchno-Issledovatel'skogo Geologo- Razvedochnogo Instituta 105: 1-45.        [ Links ]

67. Marhoumi, M., 1984. [Etudes palynologiques des series dinantiennes de la meseta marocaine. Consequenses stratigraphiques et structurales. PhD Thesis, University Louis Pasteur. Strasbourg: 111 pp. Unpublished.].        [ Links ]

68. Massa, D., Coquel, R., Loboziak, S. and Taugourdeau-Lantz, J. 1980. Essai de synthèse stratigraphique et palynologique du Carbonifère en Libye Occidentale. Annales de la Societé Géologique du Nord 99: 429-442.        [ Links ]

69. Melo, J.H.G. and Loboziak, S. 2000. Viséan miospore biostratigraphy and correlation of the Poti Formation (Parnaíba Basin, northern Brazil). Review of Palaeobotany and Palynology 112: 147-165.        [ Links ]

70. Melo J.H.G. and Loboziak S. 2003. Devonian-Early Carboniferous miospore biostratigraphy of the Amazon Basin, Northern Brazil. Review of Palaeobotany and Palynology 124: 131-202.        [ Links ]

71. Menéndez, C.A. and Azcuy, C.L. 1972. Ancistrospora un nuevo genero de miospora del Carbónico de la Argentina. Revista Española de Micropaleontología 4: 157-168.        [ Links ]

72. Menéndez, C. A. and González Amicón, O.R. 1979. Nuevos elementos de la microflora carbónica de "Las Pircas" (Formación Agua Colorada), Sierra de Famatina, La Rioja. Ameghiniana 16: 65-79.        [ Links ]

73. Naumova, S.N. 1953. Spore-pollen complexes of the Upper Devonian of the Russian Platform and their stratigraphic significance. Transactions of the Institute of Geological Sciences, Academy of Science, SSSR 60: 1-200.        [ Links ]

74. Neves, R. 1961. Namurian plant spores from the southern Pennines, England. Palaeontology 4: 247-279.        [ Links ]

75. Neves, R. and Owens, B. 1966. Some Namurian camerate miospores from the English Pennines. Pollen et Spores 8: 337- 360.        [ Links ]

76. Neves, R., Gueinn, K.J., Clayton, G., Ioannides, N., Neville, R.S. and Kruszewska, K. 1973. Palynological correlations within the Lower Carboniferous of Scotland and northern England. Transactions of the Royal Society of Edinburgh 69:23-70.        [ Links ]

77. Neves, R. and Ioannides, N. 1974. Palynology of the Lower Carboniferous (Dinantian) of the Spilmersford Borehole, East Lothian, Scotland. Geological Survey of Great Britain, Bulletin 45: 73- 97.        [ Links ]

78. Ottone, E. G. 1989. Palynoflores de la Formation Santa Máxima, Paléozoïque Supérieur, République Argentine. Palaeontographica B 213: 89-147.        [ Links ]

79. Ottone, E.G. and Azcuy, C.L. 1990. Datos palinológicos de la Formación Guandacol (Carbonífero) en la quebrada La Delfina, provincia de San Juan, Argentina. Ameghiniana 26: 191-208.        [ Links ]

80. Ottone, E.G. and Rossello, E. 1996. Palinomorfos pérmicos de la Formación La Puerta, Cordillera Frontal, Argentina. Ameghiniana 33: 453-455.        [ Links ]

81. Owens, B. 1983. Bascaudaspora gen. nov., a new reticulate miospore genus from the Namurian from Northern England. Report of the Institute of Geological Sciences 83: 45-49.        [ Links ]

82. Owens, B. and Turner, N. 1995. Late Westphalian palynomorphs from northern Saudi Arabia. Review of Palaeobotany and Palynology 89: 125-137.        [ Links ]

83. Owens, B., Loboziak, S. and Teteriuk, V.K. 1978. Palynological subdivision of the Dinantian to Westphalian deposits of Northwest Europe and Donetz Basin of the U.S.S.R. Palynology 2: 69-91.        [ Links ]

84. Owens, B., McLean, D. and Bodman, D. 2004. A revised palynozonation of British Namurian deposits and comparison with eastern Europe. Micropaleontology 50: 89-103.        [ Links ]

85. Owens, B., Zhu, H. and Turner, N. 2002. Comparative palynostratigraphy of the early Arnsbergian (Namurian) sequences between Great Britain and northwest China. Review of Palaeobotany and Palynology 118: 227-238.        [ Links ]

86. Owens, B., Neves, R., Gueinn, K.L., Mishell, D.R.F., Sabry, H.S.M.Z. and Williams, J.E. 1977. Palynological divison of the Namurian of northern England and Scotland. Proceedings Yorkshire Geology Society 41: 381-398.        [ Links ]

87. Pérez Loinaze, V. 2005. Some trilete spores from Lower Carboniferous strata of the Rio Blanco Basin, western Argentina. Ameghiniana 42: 481-488.        [ Links ]

88. Pérez Loinaze, V. 2007. A Mississippian Miospore Biozone for Southern Gondwana. Palynology 31: 101-117.        [ Links ]

89. Pérez Loinaze, V. 2008. Systematic palynological study of the Cortaderas Formation, (Mississippian) Río Blanco Basin, Argentina. Part One. Ameghiniana 45: 33-57.        [ Links ]

90. Playford, G. 1963. Lower Carboniferous microfloras of Spitsbergen-Part 2. Palaeontology 5: 619-678.        [ Links ]

91. Playford, G. 1964. Miospores from the Mississippian Horton Group, Eastern Canada. Geological Survey of Canada, Bulletin 107: 169.        [ Links ]

92. Playford, G. 1971. Lower Carboniferous spores from the Bonaparte Gulf Basin, Western Australia and Northern Territory. Bureau of Mineral Resources, Geology and Geophysics 115: 1-105.        [ Links ]

93. Playford, G. 1976. Plant microfossils from the Upper Devonian and Lower Carboniferous of the Canning Basin, Western Australia. Palaeontographica B 158: 1-71.        [ Links ]

94. Playford, G. 1978. Lower Carboniferous spores from the Ducabrook Formation, Drummond Basin, Queensland. Palaeontographica B 167: 105-160.        [ Links ]

95. Playford, G. 1985. Palynology of the Australian Lower Carboniferous: a review. 10º Congress on Carboniferous Stratigraphy and Geology, (Madrid), Comptes Rendus 4: 247-265.        [ Links ]

96. Playford, G. 1991. Australian Lower Carboniferous miospores relevant to extra-gondwanic correlations: an evaluation. Courier Forschungsinstitut Senckenberg 130: 85-125.        [ Links ]

97. Playford, G. and Helby, R. 1968. Spores from a Carboniferous section in the Hunter Valley, New South Wales. Journal of the Geological Society of Australia 15: 103-119.        [ Links ]

98. Playford, G. and Powis, G. 1979. Taxonomy and distribution of some trilete spores in Carboniferous strata of the Canning Basin, Western Australia. Pollen et Spores 21: 371-394.        [ Links ]

99. Playford, G. and Satterthwait, B. 1985. Lower Carboniferous (Viséan) spores of the Bonaparte Gulf Basin, Northwestern Australia: Part one. Palaeontographica B 195: 129-152.        [ Links ]

100. Playford, G. and Satterthwait, B. 1986. Lower Carboniferous (Viséan) spores of the Bonaparte Gulf Basin, northwestern Australia: part two. Palaeontographica B 200: 1-32.        [ Links ]

101. Playford, G. and Satterthwait, B. 1988. Lower Carboniferous (Viséan) spores of the Bonaparte Gulf Basin, Northwestern Australia: Part three. Palaeontographica B 208: 1-26.        [ Links ]

102. Playford, G. and McGregor, D.C. 1993. Miospores and organicwalled microphytoplankton of Devonian-Carboniferous boundary beds (Bakken Formation), Southern Saskatchewan: a systematic and stratigraphical appraisal. Geological Survey of Canada, Bulletin 445: 106 pp.        [ Links ]

103. Pokrovskaya, I.M., 1966. Palaeopalynology. 1. Trudy Vsesoiuznogo Nauchno-Issledovatel´skogo. Geologicheskogo Instituta 141: 351 pp.        [ Links ]

104. Potonié, R. and Kremp, G. 1954. Die Gattungen der Paläozoischen Sporae Dispersae und ihre stratigraphie. Geologisches Jahrbuch Beihefte 69: 111-194.        [ Links ]

105. Potonié, R. and Kremp, G.O. 1955. Die Sporae Dispersae des Ruhrkarbons, ihre Morphographie und Stratigraphie mit Ausblicken auf Arten anderer Gebiete und Zeitabschnitte, Teil 1. Palaeontographica B 98: 1-136.        [ Links ]

106. Potonié, R. and Kremp, G. 1956. Die Sporae Dispersae des Ruhrkarbons, ihre Morphographie und Stratigraphie mit Ausblicken auf Arten anderer Gebiete und Zeitabschnitte. Teil II. Palaeontographica B 100: 1-136.        [ Links ]

107. Powis, G.D. 1984. Palynostratigraphy of the Late Carboniferous Sequences, Canning Basin, W.A. In: P.G. Purcell (ed.), Canning Basin W.A. Proceedings of the Geological Society of Australia and Petroleum Exploration Society of Australia Symposium, Perth, 429-438 pp.        [ Links ]

108. Price, P.L. 1983. A Permian palynostratigraphy for Queensland. In: Permian Geology of Queensland. Symposium on Permian Geology of Queensland, (Brisbane, 1982), Proceedings, Geological Society of Australia, Queensland Division, 155-211 pp.        [ Links ]

109. Ravn, R.L. 1991. Miospores of the Kekiktuk Formation (Lower Carboniferous), Endicott field area, Alaska North Slope. American Association of Stratigraphic Palynologists Contribution, Series 27: 1- 173.        [ Links ]

110. Riegel, W. 1973. Sporenformen aus den Heisdorf-, Lauch- und Nohn-Schichten (Emsium und Eifelium) der Eifel, Rheinland. Palaeontographica B 142: 78-104.        [ Links ]

111. Roberts, J., Claoue-Long, J., Jones, P.J. and Foster, C.B. 1995. SHRIMP zircon age control of Gondwanan sequences in Late Carboniferous and Early Permian Australia. In: R.E. Dunay and E.A. Hailwood (eds.), Non-biostratigraphical Methods of Dating and Correlation, Geological Society London, Special Publication 89: 145-175.        [ Links ]

112. Rodríguez Amenábar, C., di Pasquo, M. and Carrizo, H.A. 2003. Datos palinológicos del límite Devónico-Carbónico en la quebrada Cortaderas, provincia de San Juan, Argentina. 12º Simposio Argentino de Paleobotánica and Palinología. Whorkshop of Carboniferous and Permian biostratigraphy: state of art, problems and perpectives, (Bahía Blanca, Argentina) Ameghiniana Suplemento Resúmenes 40: 24R.        [ Links ]

113. Scalabrini Ortíz, J. 1970. [Litología, facies y procedencia del Carbónico marino en el norte de la Precordillera sanjuanina (zona del Río Blanco). Ph. D thesis. Universidad de Buenos Aires, Argentina, pp. 123. Unpublished.].        [ Links ]

114. Scalabrini Ortíz, J. 1973. El Carbónico de la Precordillera argentina al norte del río Jáchal. 5° Congreso Geológico Argentino (Villa Carlos Paz), Actas 3: 387-401.        [ Links ]

115. Scheuring, B.W. 1974. Kraeuselisporites Leschik and Thomsonisporites Leschik-a revision of the type material of two disputed genera. Review of Palaeobotany and Palynology 17: 187- 204.        [ Links ]

116. Schopf, J.M., Wilson, R.L. and Bentall, R., 1944. An annotated synopsis of Paleozoic fossil spores and definition of genetic groups. Illinois Geolical Survey, Report 91: 66 pp.        [ Links ]

117. Smith, A.V.H. and Butterworth, M.A. 1967. Miospores in the coal seams of the Carboniferous of Great Britain. Special Papers in Palaeontology 1: 1-324.        [ Links ]

118. Souza, P.A. de 1997. Datos palinologicos do Carbonífero da Bacia do Paraná no Brazil. Revista Universidad de Guarulhos, Geociencias II (Nº especial): 43-48 pp.        [ Links ]

119. Souza, P.A. de 2006. Late Carboniferous palynostratigraphy of the Itararé Subgroup, northeastern Paraná Basin, Brazil. Review of Palaeobotany and Palynology 138: 1-29.        [ Links ]

120. Souza, P.A. De, Lima, M.R. de and Saad, A.R. 1993. Palinología dos carvôes paleozóicos de Estado do Sâo Paulo, Brasil. I-O Carvâode Buri. Revista do Instituto Geológico 14: 5-20.        [ Links ]

121. Souza, P.A. de, Lima, M.R. de and Saad, A.R. 1997. Palinología dos carvôes paleozóicos de Estado do Sâo Paulo. II-O Carvâo de Monte Mor. Revista do Instituto Geológico 18: 7-21.        [ Links ]

122. Staplin, F.L. and Jansonius, J. 1964. Elucidation of some Paleozoic Densospores. Palaeontographica B 114: 95-117.        [ Links ]

123. Steeman, A.G., Reilly, T.A. and Higgs, K. 1978. Preliminary stratigraphy of the late Devonian - early Carboniferous rocks of Hook Head, County Wexford, Ireland. Proceedings of the Royal Irish Academy 74B: 227-243.        [ Links ]

124. Stempién, M. and Turnau, E. 1988. Upper Vesean (Brigantian) miospores from the eastern part of the Lublin Coal Basin (Poland), and their stratigraphical significance. Annales Societatis Geologorum Poloniae 58: 287-305.        [ Links ]

125. Sullivan, H.J. 1964. Miospores from the Drybrook Sandstone and associated measures in the Forest of Dean Basin, Gloucestershire. Palaeontology 7: 57-61.        [ Links ]

126. Sullivan, H. J. 1968. A Tournaisian spore flora from the Cementstone Group of Ayrshire, Scotland. Palaeontology 11: 116-131.        [ Links ]

127. Tiwari, R.S. 1964. New miospore genera in the coals of Barakar Stage (Lower Gondwana) of India. The Palaeobotanist 12: 250- 259.        [ Links ]

128. Turnau, E. 1978. Spore zonation of Uppermost Devonian and Lower Carboniferous deposits of western Pomerania. Mededelingen Rijks Geologische Dienst 30: 1-35.        [ Links ]

129. Turnau, E. 1979. Korelacje utworów Górnego Fewonu i Karbonu Pomorza Zachodniego w oparciu o badania miosporowe. Rocznik Polskiego Towarzystwa Geologicznego 49: 231-269.        [ Links ]

130. Turner, N. and Spinner, E. 1988. A palynologycal study of the Lower Carboniferous strata (Dinantian), from Titterstone Clee, Shropshire, England. Pollen et Spores 30: 429-459.        [ Links ]

131. Utting, J. 1987a. Palynology of the Lower Carboniferous Windsor Group and Windsor-Canso boundary beds of Nova Scotia, and their equivalents in Quebec, New Brunswick and Newfoundland. Geological Survey of Canada Bulletin 74: 1-93.        [ Links ]

132. Utting, J. 1987b. Palynostratigraphic investigation of the Albert Formation (Lower Carboniferous) of New Brunswick, Canada. Palynology 11: 75-98.        [ Links ]

133. Utting, J. 1991. Lower Carboniferous miospore assemblages from the Hart River formation, Northern Yukon territory. Geological Survey of Canada Bulletin 412: 81- 99.        [ Links ]

134. Utting, J. 1996. Chapter 18. Paleozoic spores and pollen. 18F - Illustrations of Permian spores and pollen. In: J. Jansonius and D.C. McGregor (eds.), Palynology: principles and applications, American Association of Stratigraphic Palynologists Foundation, 621-627 pp.        [ Links ]

135. Utting, J., Jachowicz, M. and Jachowicz, A. 1989. Palynology of the Lower Carboniferous Emma Fiord Formation of Devon, Axel Heiberg, and Ellesmere Islands, Canadian Arctic Archipelago. Geological Survey of Canada Bulletin 396: 145-171.        [ Links ]

136. Van de Laar, J.G.M. and Fermont, W.J.J. 1989. On-shore Carboniferous palynology of The Netherlands. Mededelingen Rijks Geologische Dienst 43: 35-73.        [ Links ]

137. Van der Zwan, C.J., 1980. Aspects of Late Devonian and Early Carboniferous palynology of southern Ireland. III. Palynology of Devonian/Carboniferous transition sequences with special reference to the Bantry Bay area, Cork. Review of Palaeobotany and Palynology 30: 165- 286.        [ Links ]

138. Van der Zwan, C.J. 1981. Aspects of Late Devonian and Early Carboniferous palynology of southern Ireland. II. The Auroraspora macra morphon. Review of Palaeobotany and Palynology 30: 133-155.        [ Links ]

139. Vergel, M. del M. 1993. Palinoestratigrafía de la secuencia neopaleozoica en la Cuenca Chacoparanense, Argentina. 12º Congrés International de la Stratigraphie et Geologie du Carbonifere et Permien (Buenos Aires), Comptes Rendus 1: 201-212.        [ Links ]

140. Vergel, M. del M. and Luna, F. 1992. Registros palinológicos en sedimentos del Neopaleozoico de la Sierra de Paimán, La Rioja, Argentina. Acta Geologica Lilloana 17: 161-168.        [ Links ]

141. Vergel, M. Del M., Buatois, L.A. and Mángano, M.G. 1993. Primer registro palinológico en el Carbonífero Superior del margen norte de la Cuenca Paganzo, Los Jumes, Catamarca, Argentina. 12º Congrés International de la Stratigraphie et Geologie du Carbonifere et Permien (Buenos Aires) Comptes Rendus 1: 213-227.        [ Links ]

142. Wilson, B.R., Traverse, A. and Williams, E.G., 1984. Palynological delination of the Mississippian - Pennsylvanian uncorformity in west-central Pennsylvania. 9º Congrés International de la Stratigraphie et Geologie du Carbonifere et Permien, (Washington, 1979), Comptes Rendus 3: 337-344.        [ Links ]

143. Yang, W. 1999. Stratigraphic and phytogeographic palynology of Late Paleozoic sediments in western Yunnan, China. Reports of Niigata University, Serie E, 14: 15-99.        [ Links ]

144. Zhu, H. 1993. A revised palynological sub-division of the Namurian of Jingyuan, northwest China. Review of Palaeobotany and Palynology 77: 273-300.        [ Links ]

145. Zhu, H. 1995. Namurian miospores from China and their correlation with Europe and North America. Review of Palaeobotany and Palynology 89: 335-357.        [ Links ]

Recibido: 17 de mayo de 2007.
Aceptado: 4 de diciembre de 2007.

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons