SciELO - Scientific Electronic Library Online

 
vol.46 número3Diversidad taxonómica y distribución de los morfotipos de braquiópodos en la Zona de Ahtiella argentina (Ordovícico Medio), Formación San Juan, Precordillera ArgentinaDescripción del fémur de Protomegalonyx chasicoensis Scillato-Yané (Mammalia, Xenarthra, Megalonychidae) de la Formación Arroyo Chasicó (Mioceno tardío), provincia de Buenos Aires, Argentina: Consideraciones sistemáticas sobre los perezosos de Edad Chasiquense índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Bookmark


Ameghiniana

versión impresa ISSN 0002-7014

Ameghiniana vol.46 no.3 Buenos Aires jul./set. 2009

 

ARTÍCULOS ORIGINALES

New palynological data from the Malanzán Formation (Carboniferous), La Rioja Province, Argentina

Valeria Perez Loinaze1

1División Paleobotánica, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Av. Angel Gallardo 470, 1405 Buenos Aires, Argentina. loinazev@macn.gov.ar

Abstract. Palynological analysis of the Malanzán Formation in the Paganzo Basin, northwestern Argentina, has yielded six well-preserved palynological assemblages. Fifty-nine species were determined: 37 spores, 19 pollen grains, and 3 algae. Thirty-two of these species have not been recorded so far from the Malanzán Formation, and all pollen species are illustrated for the first time. These assemblages are referred to Sub-Biozone A of the Raistrickia densa-Convolutispora muriornata Biozone, Serpukhovian in age. Moreover, the abundance of monosaccate pollen grains might constrain the Malanzán Formation to the late Serpukhovian.

Resumen. Nuevos datos palinológicos de la Formación Malanzán (Carbonífero), Provincia de la Rioja, Argentina. Nuevas asociaciones palinológicas han sido obtenidas de la Formación Malanzán (Cuenca Paganzo), noroeste de Argentina. En las seis muestras fértiles estudiadas para este trabajo, se identificaron un total de cincuenta y nueve especies de palinomorfos: 37 especies de esporas, 19 de granos de polen y 3 especies de algas. Treinta y dos de las especies de palinomorfos reconocidas no habían sido reportadas hasta el momento para la unidad. Además, se ilustran por primera vez los granos de polen de la Formación Malanzán. Las asociaciones estudiadas son referidas a la Biozona Raistrickia densa- Convolutispora muriornata, y más precisamente a la sub Sub-Biozona A, de edad serpukhoviana. Además, la abundancia de granos de polen monosacados podría restringir a la Formación Malanzán al Serpukhoviano tardío.

Key words. Argentina; Malanzán Formation; Carboniferous; Palynology.

Palabras clave. Argentina; Formación Malanzán; Carbonífero; Palinología.

Introduction

Thick Upper Palaeozoic sequences located in western and northwestern Argentina and constituting the Río Blanco, Calingasta-Uspallata and Paganzo basins, represent one of the most continuous sedimentary sequences of this age in Gondwana. During the past two decades, a large number of systematicpalynological and biostratigraphic studies of these Carboniferous and Permian sediments have been published (e.g., Archangelsky et al., 1996; Césari and Limarino, 2002; Césari and Gutiérrez, 2001; Gutiérrez et al., 2003; Gutiérrez and Barreda, 2006). Despite this extensive research on the Late Palaeozoic, some issues are still unresolved, including the lack of a detailed characterization of the latest Mississippian palynological content. Such study would allow a clear distinction between Mississippian and Pennsylvanian palynofloras; i.e., those preserved in glaciogene sedimentary sequences deposited during the "Middle Carboniferous glaciation" event of the latest Mississippian-earliest Pennsylvanian, thus providing an important tool for stratigraphic correlations. In this work, new palynological assemblages recovered from fine-grained sediments of the Malanzán Formation, deposited in a fjord environment (during a postglacial transgressive event) and in a deltaic environment, are described in detail. The assemblages contain abundant monosaccate and bisaccate pollen grains, which are identified and illustrated for the first time from this formation.

Geological setting

Located in the northwestern region of Argentina, the Paganzo Basin includes sequences referred to the Paganzo Group by Azcuy and Morelli (1970) and dated as Serpukhovian-Permian. In the Sierra de los Llanos area (figure 1), this group is represented, in ascending order, by the Malanzán, Loma Larga, Solca, and La Colina formations (Andreis et al, 1986; Net, 1998). The Malanzán Formation is overlain conformably by conglomerates, sandstones and some mudstone beds of the Loma Larga Formation, and lies on crystalline basement of the Cambrian Pacatala Complex (Page et al., 2002) and the Ordovician Chepes Complex (Pieters and Skinom, 1997).


Figure 1. Geological map and geographic location of the fossiliferous localities (modified from Net , 1999) / mapa geológico y ubicación geográfica de las localidades fosilíferas (modificado de Net, 1999).

The Malanzán Formation was originally defined by Furque (1968) to include Late Palaeozoic sequences outcropping in the Sierra de los Llanos (Bracaccini, 1946, 1948). Later, Azcuy (1975a) subdivided the Malanzán Formation into three members, named Divisoria, Estratos Carbonosos and Conglomerados Amarillo Verdosos-Violáceos (in ascending order). A different classification was proposed by Andreis et al. (1986), who restricted the name Malanzán Formation to the basal member (the "Divisoria Member" of Azcuy, 1975a). Moreover, Andreis et al. (1986) defined the Loma Larga Formation to incorporate Azcuy's (1975a) Estratos Carbonosos and Conglomerados Amarillo Verdosos-Violáceos members. More recently, Net (1998) and Net and Limarino (1999) included only the Estratos Carbonosos Member in the Loma Larga Formation, the upper member being considered part of the overlying Solca Formation, defined by Andreis et al. (1986).
In the studied area, the Malanzán Formation, up to 345 m thick, is segregated into five sections based on lithology, sedimentary structures, and cyclicity (figure 2). (1) The lowermost section, 85 m thick, is composed of coarse-grained conglomerates, breccias, massive or cross-stratified pebble sandstones, diamictites and some shales with dropstones. These deposits were interpreted by Andreis et al. (1986) as formed in alluvial fans. (2) Grey laminated mudstones with dropstones (55 m thick) bearing megaclasts up to 20 cm in diameter. Some beds of massive diamictites, up to 1 m thick, and beds of ripple crosslaminated sandstones are intercalated within the laminated mudstones. These deposits were interpreted by Limarino and Césari (1988) and Sterren and Martínez (1996) as having accumulated in glaciolacustrine environments; however, Limarino et al. (2002) suggested that the sediments represent the beginning of the postglacial "Middle Carboniferous" transgression in the Paganzo Basin. (3) Black shales and mudstones without dropstones, up to 35 m thick, including thin beds of marls and ripple cross-laminated fine-grained sandstones. This interval is believed to have been deposited during the maximum post-glacial flooding event (Limarino et al., 1996). From palynological data, Gutiérrez and Limarino (2001) suggested brackish conditions, with sedimentation in palaeofjords, as previously inferred by Net and Limarino (1999). New palynological samples from this section are documented herein. (4) Largescale cross-bedded sandstones reaching 50 m in thickness, exhibiting megasets (up to 9 m thick) formed by the progradation of Gilbert-type deltas (Sterren and Martínez, 1996). Three palynological samples were collected from this interval. (5) Interbedded organic-rich mudstones and ripple cross-laminated fine-grained sandstones (130 m thick) interpreted as mouth bar deposits.


Figure 2. Schematic stratigraphic section of the Malanzán Formation, showing the provenance of palynological samples (modified from Net, 1999) / sección estratigráfica esquemática de la Formación Malanzán, mostrando la ubicación de las muestras palinológicas (modificado de Net, 1999).

Material and methods

The studied samples were obtained from the Malanzán Formation (Paganzo Basin) in La Rioja Province, Argentina (figures 1, 2). Three fossiliferous levels were sampled from outcrops of this formation at the La Chimenea locality in the Olta Valley; they consist of thin coal beds, interpreted as frontal bars of a delta, here designated as Section 4 (BA Pal 5811-13). Other three samples came from the Cuestita de la Herradura locality in the Malanzán valley, they consist of laminated mudstones without dropstones and are included in Section 3 (BA Pal 5814-16). All specimens illustrated herein (figures 3-6) are deposited in the palynological collection of the Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (BA Pal) and are slide-located by England Finder coordinates.


Figure 3. 1, Punctatisporites irrasus Hacquebard 1957 BA Pal 5811-1 : Y49/3; 2, Punctatisporites priscus Bharadwaj and Salujha 1965 BA Pal 5813-1 : X48/3; 3, Leiotriletes tiwarii (Saxena) Saxena 1993 1965 BA Pal 5811-2 : E50/4; 4, Retusotriletes sp. 2 BA Pal 5811-4 :P28/1; 5, Cyclogranisporites firmus Jones and Truswell 1992 BA Pal 5812-1 : B12/3; 6, Cyclogranisporites plicatus Perez Loinaze and Césari 2004 BA Pal 5813-2 : H45/4; 7, Retusotriletes sp. 1 BA Pal 5811-4 : P28/2; 8, Punctatisporites sp. cf. P. glaber (Naumova) Playford 1962 BA Pal 5812-3 : W40/1; 9, Apiculiretusispora sp. cf. A. ralla (Menéndez and Azcuy) Menéndez and Azcuy 1971 BA Pal 5816-2 : G32/3; 10, Anapiculatisporites sp. cf. A. concinnus Playford 1962 BA Pal 5816-2 : E45/3; 11, Cyclogranisporites rinconadensis Césari and Limarino 2002 BA Pal 5811-4 : R40/2; 12, Verrucosisporites andersonii Backhouse 1988 BA Pal 5812-1 : M26/3; 13, Dibolisporites disfacies Jones and Truswell 1992 BA Pal 5813-1 : D23/2; 14, Granulatisporites sp. cf. G. austroamericanus Archangelsky and Gamerro 1979 BA Pal 5811-1 : K51/4; 15, Lophotriletes intermedius Azcuy 1975 BA Pal 5816-1 : V38/3; 16, Reticulatisporites asperidictyus Playford and Helby 1968 BA Pal 5812-1 : D51/3; 17, Dictyotriletes cortaderensis Césari and Limarino 1987 BA Pal 5811-1 : N53/1; 18, Apiculiretusispora alonsoi Ottone 1989 BA Pal 5813-1 : S33/3; 19, Apiculatisporis variornatus di Pasquo et al. 2003 BA Pal 5815-3 : Z30/3; 20, Apiculatasporites caperatus Menéndez and Azcuy 1969 BA Pal 5813-2 : Q30/3; 21, Convolutispora muriornata Menéndez 1965 BA Pal 5814- : J22/4; 22, Punctatisporites gretensis Balme and Hennelly 1956 BA Pal 5813-2 : Z55/3. Scale bar / escala gráfica: 20 μm.

The samples were processed using standard palynological techniques for extraction and concentration of palynomorphs. The organic residues were sieved using 20 μm mesh and later mounted in glycerine jelly on microscope slides.

Systematic palynology

The identified palynomorphs (spores, pollen grains and algae) are listed below in alphabetical order (* indicates first report from the Malanzán Formation). Only the species recognized for the first time in Argentina, and those with doubtful specific assignment, are described.

Spores

Anapiculatisporites sp. cf. A. concinnus Playford 1962 (figure 3.10)
Apiculatasporites caperatus Menéndez and Azcuy 1969 (figure 3.20)
Apiculatisporis variornatus di Pasquo et al. 2003* (figure 3.19)
Apiculiretusispora alonsoi Ottone 1989* (figure 3.18)
Apiculiretusispora sp. cf. A. ralla (Menéndez and Azcuy) Menéndez and Azcuy 1971 (figure 3.9)
Convolutispora muriornata Menéndez 1965 (figure 3.21)
Cristatisporites inconstans Archangelsky and Gamerro 1979* (figure 4.7)
Cristatisporites menendezii (Menéndez and Azcuy) Playford 1978 (figure 4.13)
Cristatisporites rollerii Ottone 1989* (figure 4.2)
Cristatisporites stellatus (Azcuy) Gutiérrez and Limarino 2001 (figure 4.3)
Cristatisporites sp.* (figure 4.5)
Cyclogranisporites firmus Jones and Truswell 1992* (figure 3.5)
Cyclogranisporites plicatus Perez Loinaze and Césari 2004* (figure 3.6)
Cyclogranisporites rinconadensis Césari and Limarino 2002* (figure 3.11)
Dibolisporites disfacies Jones and Truswell 1992* (figure 3.13)
Dictyotriletes cortaderensis Césari and Limarino 1987 (figure 3.17)
Endosporites sp. * (figure 4.11)
Grandispora sp.* (figure 4.10)
Granulatisporites sp. cf. G. austroamericanus Archangelsky and Gamerro 1979* (figure 3.14)
Grossusporites microgranulatus (Menéndez and Azcuy) Perez Loinaze and Césari 2004* (figure 4.16)
Indotriradites volkheimeri (Azcuy) Perez Loinaze 2008 (figure 4.9)
Leiotriletes tiwarii (Saxena) Saxena 1993 (=Leiotriletes virkii)* (figure 3.3)
Lophotriletes intermedius Azcuy 1975a (figure 3.15)
Microreticulatisporites punctatus Knox 1950* (figure 4.15)
Punctatisporites gretensis Balme and Hennelly 1956* (figure 3.22)
Punctatisporites irrasus Hacquebard 1957* (figure 3.1)
Punctatisporites priscus Bharadwaj and Salujha 1965* (figure 3.2)
Punctatisporites sp. cf. P. glaber (Naumova) Playford 1962 (figure 3.8)
Raistrickia paganciana Azcuy 1975a (figure 4.1)
Raistrickia rotunda Azcuy 1975a (figure 4.14)
Raistrickia sp. cf. R. radiosa Playford and Helby 1968* (figure 4.8, 12, 17)
Reticulatisporites asperidictyus Playford and Helby 1968 (figure 3.16)
Reticulatisporites magnidictyus Playford and Helby 1968* (figure 4.6)
Retusotriletes sp. 1* (figure 3.7)
Retusotriletes sp. 2* (figure 3.4)
Vallatisporites ciliaris (Luber) Sullivan 1964 (figure 4.4)
Verrucosisporites andersonii Backhouse 1988* (figure 3.12)


Figure 4. 1, Raistrickia paganciana Azcuy 1975 BA Pal 5814-3: W53/3; 2, Cristatisporites rollerii Ottone 1989 BA Pal 5812-1: P35/2; 3, Cristatisporites stellatus (Azcuy) Gutiérrez and Limarino 2001 BA Pal 5812-1: L27/2; 4, Vallatisporites ciliaris (Luber) Sullivan 1964 BA Pal 5816-2: W34/1; 5, Cristatisporites sp. BA Pal 5812-2: Z52/4; 6, Reticulatisporites magnidictyus Playford and Helby 1968 BA Pal 5812-2: Q27/2; 7, Cristatisporites inconstans Archangelsky and Gamerro 1979 BA Pal 5811-2: T39/4; 8, 12, 17, Raistrickia sp. cf. R. radiosa Playford and Helby 1968; 8, BA Pal 5812-1: A28/2; 12, BA Pal 5816-5: K40/4, sculptural detail/ detalle de la escultura; 17, BA Pal 5811-5: A28/3; 9, Indotriradites volkheimerii Azcuy 1975 BA Pal 5814-2: X29/3; 10, Grandispora sp. BA Pal 5812-1: J23/4; 11, Endosporites sp. BA Pal 5812-3: O38/2; 13, Cristatisporites menendezii (Menéndez and Azcuy) Playford 1978 BA Pal 5811-2: O53/3; 14, Raistrickia rotunda Azcuy 1975 BA Pal 5815-3: H48/4; 15, Microreticulatisporites punctatus Knox 1950 BA Pal 5816-3: Y28/2; 16, Grossusporites microgranulatus (Menéndez and Azcuy) Perez Loinaze and Césari 2004 BA Pal 5816-3: G32/4. Scale bar: 20 μm except 12: 10 μm / escala gráfica: 20 μm con excepción de 12: 10 μm.

Pollen grains

Caheniasaccites densus Lele and Karin emend. Gutiérrez 1993* (figure 5.12)
Cannanoropollis densus (Lele) Bose and Maheshwari 1968 (figure 5.8)
Cannanoropollis janakii Potonié and Sah 1960 (figure 5.3)
Cannanoropollis mehtae (Lele) Bose and Maheshwari 1968 (figure 6.4)
Circumplicatipollis plicatus Ottone and Azcuy 1988 (figure 5.14)
Colpisaccites granulosus Archangelsky and Gamerro 1979* (figure 5.15)
Costatascyclus crenatus Felix and Burbridge emend. Urban 1971* (figure 5.13)
Crucisaccites monoletus Maithy 1965 (figure 5.10)
Divarisaccus stringoplicatus Ottone 1991* (figure 5.6)
Limitisporites rectus Leschik 1956* (figure 5.2)
Peppersites sp. cf. P. ellipticus Ravn 1979* (figure 5.1, 4)
Plicatipollenites gondwanensis (Balme and Hennelly) Lele 1964* (figure 5.16)
Plicatipollenites trigonalis Lele 1964* (figure 6.5)
Plicatipollenites malabarensis (Potonié and Sah) Foster 1975 (figure 5.11)
Potonieisporites barrelis Tiwari 1965* (figure 6.1)
Potonieisporites densus Maheshwari 1967* (figure 5.5)
Potonieisporites magnus Lele and Karim 1971 (figure 6.2)
Potonieisporites neglectus Potonié and Lele 1961* (figure 5.9)
Potonieisporites sp. cf. P. jayantiensis Lele and Karim 1971* (figure 5.7)


Figure 5. 1, 4, Peppersites sp. cf. P. ellipticus Ravn 1979; 1, BA Pal 5815-2: A42/2; 4, BA Pal 5816-1: T22/2; 2, Limitisporites rectus Leschik 1956 BA Pal 5816-2: Y56/1; 3, Cannanoropolis janakii Potonié and Sah 1960 BA Pal 5815-1: P21/3; 5, Potonieisporites densus Maheshwari 1967 BA Pal 5811-2: R45/4; 6, Divarisaccus stringoplicatus Ottone 1991 BA Pal 5811-6: Z57/1; 7, Potonieisporites sp. cf. P. jayantiensis Lele and Karim 1971 BA Pal 5811-4: Q48/0; 8, Cannanoropolis densus (Lele) Bose and Maheshwari 1968 BA Pal 5816-2: Q49/3; 9, Potonieisporites neglectus Potonié and Lele 1961 BA Pal 5815-1: J32/4; 10, Crucisaccites monoletus Maithy 1965 BA Pal 5813- 1: U21/2; 11, Plicatisporites malabarensis (Potonié and Sah) Foster 1975 BA Pal 5813-2: Z25/3; 12, Caheniasaccites densus Lele and Karin emend. Gutiérrez 1993 BA Pal 5813-2: N39/4; 13, Costatascyclus crenatus Felix and Burbridge emend. Urban 1971 BA Pal 5813-1: Y18/4; 14, Circumplicatipollis plicatus Ottone and Azcuy 1988 BA Pal 5811-5: U51/2; 15, Colpisaccites granulosus Archangelsky and Gamerro 1979 BA Pal 5815-1: Y34/4; 16, Plicatipollenites gondwanensis (Balme and Hennelly) Lele 1964 BA Pal 5811-2: D62/3. Scale bar / escala gráfica: 20 μm.

Algae

Tetraporina punctata (Tiwari and Navale) Kar and Bose 1976 (figure 6.3)
Botryococcus sp. (figure 6.6)
Navifusa sp. (figure 6.7)


Figure 6. 1, Potonieisporites barrelis Tiwari 1965 BA Pal 5815-1: R24/4; 2, Potonieisporites magnus Lele and Karim 1971 BA Pal 5816- 1: X42/3; 3, Tetraporina punctata (Tiwari and Navale) Kar and Bose 1976 BA Pal 5811-5: U60/1; 4, Cannanoropolis mehtae (Lele) Bose and Maheshwari 1968 BA Pal 5813-1: C33/1; 5 , Plicatipollenites trigonalis Lele 1964 BA Pal 5812-1: R57/4; 6, Botryococccus sp. BA Pal 5815-1: M37/4; 7, Navifusa sp. BA Pal 5816-1: U54/3. Scale bar / escala gráfica: 20 μm.

Anteturma PROXIMEGERMINANTES Potonié 1970
Turma TRILETES Reinsch emend. Dettmann 1963
Suprasubturma ACAVATITRILETES Dettmann 1963
Subturma AZONOTRILETES Luber emend. Dettmann 1963
Infraturma LAEVIGATI Bennie and Kidston emend. Potonié 1956
Infraturma RETUSOTRILETI Streel 1964

Genus Retusotriletes Naumova emend.
Streel 1964

Type species. Retusotriletes simplex Naumova 1953.

Retusotriletes sp. 1
Figure 3.7

Description. Spore radial, trilete. Amb subcircular. Laesurae straight, with raised narrow lips, length three-quarters of spore radius, with imperfect curvaturae. Exine laevigate, about 0.8 μm thick.
Dimensions. Equatorial diameter: 40 μm (1 specimen).
Comparisons. Retusotriletes anfractus Menéndez and Azcuy 1969 differs by its sinuous laesurae. Retusotriletes tenuis Menéndez 1965 has granular exine. Retusotriletes simplex Naumova 1953 is smaller (equatorial diameter, 30-35 μm). Retusotriletes indignus Azcuy 1975a differs by its thicker exine.

Retusotriletes sp. 2
Figure 3.4

Description. Spore radial, trilete. Amb circular. Laesurae straight, with raised narrow lips, length threequarters of spore radius, with perfect curvaturae. Exine laevigate, about 0.8 μm thick.
Dimensions. Equatorial diameter: 42 μm (1 specimen).
Comparisons. Retusotriletes minutus Butterworth and Mahdi 1982 differs by its thicker exine. Retusotriletes sp. 1 possesses imperfect curvaturae.

Infraturma APICULATI Bennie and Kidston emend. Potonié 1956
Subinfraturma GRANULATI Dybová and Jachowicz 1957

Genus Anapiculatisporites Potonié and Kremp 1954

Type species. Anapiculatisporites isselburgensis Potonié and Kremp 1954.

Anapiculatisporites sp. cf. A. concinnus Playford 1962
Figure 3.10

Remarks. Following such authors as Dueñas and Césari (2005), it is preferred to retain this species in the genus Anapiculatisporites, rejecting Ravn's (1991) proposal. Anapiculatisporites argentinensis Azcuy 1975a can be considered conspecific with A. concinnus, as suggested by such authors as Jones and Truswell (1992) and Stephenson (2004).

Genus Lophotriletes Naumova emend. Potonié and Kremp 1954

Type species. Lophotriletes gibbosus (Ibrahim) Potonié and Kremp 1954.

Lophotriletes intermedius Azcuy 1975a
Figure 3.15

Remarks. The exine of the studied specimens is slightly thinner than was reported for this species by Azcuy (1975a).

Genus Apiculiretusispora Streel 1964

Type species. Apiculiretusispora brandtii Streel 1964.

Apiculiretusispora sp. cf. A. ralla (Menéndez and Azcuy) Menéndez and Azcuy 1971
Figure 3.9

Description. Spore radial, trilete. Amb subcircular. Laesurae straight, simple, extending almost to equator, ending in imperfect curvaturae. Proximal face laevigate. Distal face sculptured irregularly and sparsely with grana and coni (0.5-1.5 μm in basal width and height). Exine 1.5 μm thick.
Dimensions. Equatorial diameter: 42 μm (1 specimen).
Comparisons. Since only one poorly preserved specimen was found, the specific assignment is made reservedly.
Distribution. This species was previously recorded in Pennsylvanian sequences of Argentina and Brazil (e.g., Ottone, 1989, 1991; García, 1995; Longhim et al., 2002; di Pasquo, 2003; di Pasquo et al., 2003).

Infraturma BACULATI Dybová and Jachowicz 1957

Genus Raistrickia Schopf, Wilson and Bentall emend. Potonié and Kremp 1954

Type species. Raistrickia grovensis Schoff, Wilson and Bentall 1944.

Raistrickia sp. cf. R. radiosa Playford and Helby 1968
Figure 4.8, 12, 17

Description. Spores radial, trilete. Amb subcircular to circular. Laesurae straight, simple, length threequarters of spore radius. Exine with densely distributed sculptural elements (1-2 μm in basal width, 1.5- 3 μm high) having straight sides and blunt, rounded, or expanded apices, and occasionally fungiform elements. Exine 1.5-2 μm thick.
Dimensions. Equatorial diameter: 53(63)72 μm (17 specimens).
Comparisons. Raistrickia radiosa Playford and Helby 1968 differs from the studied specimens in having reduced sculptural elements on the proximal face.
Distribution. This species was recovered from palynoflora of Australia (Playford and Helby 1968) and Argentina (Gutiérrez and Césari, 1989; di Pasquo, 2003).

Genus Reticulatisporites Ibrahim emend. Potonié and Kremp 1954

Type species. Reticulatisporites reticulatus (Ibrahim) Ibrahim 1933.

Reticulatisporites magnidictyus Playford and Helby 1968
Figure 4.6

1991 Reticulatisporites riverosii Ottone, pp. 126-127, plate 1, figure 10, plate 2, figure 10.

Remarks. Examination of the original specimens used by Ottone (1991) for erecting Reticulatisporites riverosii indicates that they possess all the diagnostic characteristics of Reticulatisporites magnidictyus. Dino and Playford (2002a) noted that this species tends to have larger lumina in proximal face. The Argentinean spores have a considerable variation, with specimens showing similar size of lumina in both faces, and others having larger lumina in the proximal face. Accordingly, although Ottone did not recognize differences between proximal and distal in his specimens, Reticulatisporites riverosii is considered conspecific.
Reticulatisporites magnidictyus, originally described from the Australian Italia Road Formation by Playford and Helby (1968), is considered an important biostratigraphic marker, since its oldest records are late Visean. However, the species has been recorded in younger sediments (late Serpukhovian-Pennsylvanian) by Limarino and Gutiérrez (1990), Ottone (1991), Gutiérrez and Barreda (2006) and Perez Loinaze (2007).

Subturma ZONOTRILETES Waltz in Luber and Waltz 1938
Infraturma CINGULICAVATI Smith and Butterworth 1967

Genus Cristatisporites Potonié and Kremp emend. Butterworth, Jansonius, Smith and Staplin 1964

Type species. Cristatisporites indignabundus (Loose) Potonié and Kremp 1954.

Cristatisporites sp.
Figure 4.5

Description. Spore radial, trilete, cavate, cingulizonate. Amb subtriangular. Inner body subtriangular. Laesurae straight, with narrow lips, extending almost to the equatorial margin. Proximal face laevigate. Central body with a narrow cingulum. Central area of the distal face sculptured with grana and sharp coni and spinae (3-10 μm high, 1.5-5 μm in basal width), frequently fused basally to form short cristae, often surmounted by a small spinus. Sculptural elements progressively diminished polewards. Translucent zona about 1/4 of spore radius, outer margin entire to slightly irregular, sculptured with sparsely distributed coni and spinae up to 5 μm high.
Dimensions. Equatorial diameter: 70 μm (1 specimen).
Comparisons. In Cristatisporites indignabundus (Loose) Staplin and Jansonius 1964, the margin of the central body bears setose spinae up to 2.5 μm high. Cristatisporites lestai Archangelsky and Gamerro 1979 and C. longispinosus Menéndez 1971 differ by having a markedly irregular zona. Moreover, in the former, the sculpture is dominantly verrucose. Cristatisporites solaris (Dias-Fabrício) Picarelli and Dias-Fabrício 1990 has a smaller diameter and dentate margin zona. In Cristatisporites rollerii Ottone 1989, the zonal width is approximately 1/2-1/3 of the spore radius, and the sculptural elements are differently distributed on the body.

Genus Indotriradites (Tiwari) Foster 1979

Type species. Indotriradites korbaensis Tiwari 1964.

Indotriradites volkheimeri (Azcuy) Perez Loinaze 2008
Figure 4.9

Dimensions. Equatorial diameter: 60, 68 μm (2 specimens).
Remarks. Krauselisporites volkheimeri Azcuy 1975b was recently referred to Indotriradites by Perez Loinaze (2008) in accordance with the emendation of Krauselisporites by Scheuring (1974).

Suprasubturma PSEUDOSACCITITRILETES Richardson 1965
Infraturma MONOPSEUDOSACCITI Smith and Butterworth 1967

Genus Grandispora Hoffmeister, Staplin and Malloy emend. Neves and Owens 1966

Type species. Grandispora spinosa Hoffmeister, Staplin and Malloy 1955.

Grandispora sp.
Figure 4.10

Description. Spores radial, trilete, cavate. Amb triangular to rounded subtriangular. Laesurae straight, with narrow lips reaching almost to the equatorial margin. Intexine distinct, outline conformable with amb, about 2/3 of spore radius. Proximal surface laevigate. Distal surface sculptured with coni and grana, rounded in lateral view, and occasionally with irregularly distributed biform elements (2-6 μm high, 2-5 μm in basal width). Equatorial region with close-spaced coni and bacula (2- 5 μm high and 5-10 μm in basal width).
Dimensions. Equatorial diameter: 56, 91 μm (2 specimens).
Comparison. The above specimens differ from previously described species of Grandispora in that the distal sculptural elements are smaller than those in the equatorial region. Jayantisporites Lele and Makada 1972 possesses a pseudozona, formed by basally fused sculptural elements. However, this genus differs from the Malanzán specimens in having basally fused, biform sculptural elements, thus forming cristate ridges on the distal face. Grandispora uncata (Hacquebard) Gupta 1969 is similar to these specimens, but both its proximal and distal faces are sculptured, and more densely so in the equatorial region. Spinozonotriletes sp. 1 Azcuy 1975b differs in having larger sculptural elements (8-23 μm).

Genus Endosporites Wilson and Coe emend. Bharadwaj 1965

Type species. Endosporites ornatus Wilson and Coe 1940 (designated by Schopf et al., 1944).

Endosporites sp.
Figure 4.11

Description. Spores radial, trilete, cavate, amb subcircular. Laesurae straight, simple, reaching almost to the equatorial margin. Intexine laevigate, outline conformable with amb. Exoexine microgranular, thicker than intexine.
Dimensions. Equatorial diameter: 42-51 μm, intexine diameter: 35-39 μm (6 specimens).
Comparisons. Endosporites parvus Menéndez 1965 possesses microgranular intexine and is smaller (equatorial diameter, 32 μm; intexine diameter, 15.5- 18.5 μm). Endosporites translucidus Menéndez 1965 and Endosporites sp. of Gutiérrez and Limarino (2001) differ in having granular intexine. Endosporites sp. of Césari and Vázquez Nístico (1988) has laevigate and strongly folded exoexine. Endosporites sp. A of Azcuy (1975b) features a thicker exoexine and microgranular intexine. Endosporites rhytidosaccus Menéndez and Azcuy 1973 and Endosporites minutus Hoffmeister, Staplin and Malloy 1955 have microgranular and folded intexine.

Anteturma VARIEGERMINANTES Potonié 1970
Turma SACCITES Erdtman 1947
Subturma MONOSACCITES Chitaley emend. Potonié and Kremp 1954
Infraturma VESICULOMONORADITI Pant 1954

Genus Costatascyclus Felix and Burbridge emend. Urban 1971

Type species. Costatascyclus crenatus Felix and Burbridge emend. Urban 1971.

Costatascyclus crenatus Felix and Burbridge emend. Urban 1971
Figure 5.13

Description. Pollen grains bilateral, monosaccate. Amb transversely oval with crenulate margin. Corpus outline subcircular to oval in polar view, denser than saccus. Laesurae rarely perceptible. Saccus attached to corpus distally and proximally; finely endoreticulate, with coarse radial folds.
Dimensions. Overall breadth: 86(121)152 μm, overall length: 60(79)100 μm, corpus length: 48(62)72 μm, corpus breadth: 40(58)75 μm (32 specimens).
Comparisons. Potonieisporites balmeii (Hart) Segroves 1969 differ in having a pair of distinctive folds parallels the corpus margin.
Previous records. Pennsylvanian: Brazil, Paraná Basin, Itararé Subgroup (Souza, 2000; Souza et al., 2003); Parnaíba Basin, Piauí Formation (Dino and Playford, 2002b); Amazonas Basin, Tapajós Group (Playford and Dino, 2000); U.S.A. (Felix and Burbridge, 1967; Urban, 1971; Ravn, 1979, 1986). Lower Permian: Uruguay, San Gregorio Formation (Gutiérrez et al., 2006).

Subinfraturma DISACCITES Cookson 1947

Infraturma DISACCITRILETES Leschik 1956

Genus Colpisaccites Archangelsky and Gamerro 1979

Type species. Colpisaccites granulatus Archangelsky and Gamerro 1979.

Colpisaccites granulosus Archangelsky and Gamerro 1979
Figure 5.15

Comparisons. Compared to the material described originally by Archangelsky and Gamerro (1979), the present specimens are larger, having the following dimensions: overall breadth, 125(145)170 μm; overall length, 103(123)130 μm; corpus length, 105(117)150 μm; corpus breadth, 81(103)111 μm. However, the Malanzán specimens are similar in size to those described by Gutiérrez (1993), who noted that size differences can be interpreted as infraspecific variability. Among the three morphotypes of Colpisaccites granulosus identified by Gutiérrez (1993), two (A and B) were recognized during the present study. These morphotypes differ in the degree of separation of the exine (more marked in A).
Previous records. Pennsylvanian: Argentina, Paganzo Basin, Agua Colorada Formation (Limarino and Gutiérrez, 1990; Gutiérrez, 1993). Lower Permian: Argentina, San Rafael Basin, Yacimiento Los Reyunos Formation (Césari et al., 1996), Chacoparaná Basin (Archangelsky and Gamerro, 1979); Uruguay, San Gregorio Formation (Gutiérrez et al., 2006).

Genus Peppersites Ravn 1979

Type species. Peppersites ellipticus Ravn 1979.

Peppersites sp. cf. P. ellipticus Ravn 1979
Figure 5.1, 4

Description. Pollen grains bilateral, monosaccate. Amb transversely oval to elliptical. Corpus outline (in polar view) closely conformable, dark, without folds. Laesurae rarely discernible. Saccus finely infrareticulate, approximately 1/10 of central body.
Dimensions. Overall breadth: 135-166 μm, overall length: 102-148 μm, corpus length: 115-154 μm, corpus breadth: 84-125 μm, saccus breadth: 6-12 μm (5 specimens).
Comparisons. This monotypic pollen genus is characterized chiefly by its large corpus. The specimens studied differ from Peppersites ellipticus in having a corpus slightly narrower than the overall breadth. Previous records. Pennsylvanian: Brazil, Amazonas Basin, Tapajós Group (Playford and Dino, 2000); U.S.A. (Ravn, 1979, 1986; Ravn and Fitzgerald, 1982).

Characteristics of the palynological assemblages

The palynomorphs recovered from the Malanzán Formation are generally well-preserved and moderately diverse. Relative abundance of pollen grains is comparable between Section 3 (13-29 %) and Section 4 (12-24 %). The marine elements and algae species are very scarce, representing less than 1% of the total assemblage, and were recognized only in Section 4.
In his study of six samples of the Malanzán Formation in the Sierra de los Llanos area, Azcuy (1975a, b) recognized 19 spore species and two pollen species. Based on those identifications, Azcuy suggested an early Namurian age for the formation. More recently, Gutiérrez and Limarino (2001) studied black shale samples of this unit (from Section 3 of the present study), providing a more complete palynological inventory, with the identification of 41 species of spores and 11 of pollen grains (the latter unillustrated). These authors postulated a late Namurian-early Westphalian for the association and described marine elements for the first time from the unit. The palynological assemblages of the Malanzán Formation were referred by Césari and Gutiérrez (2001) to the Raistrickia densa-Convolutispora muriornata Biozone (Serpukhovian-Stephanian).
The studied assemblages comprise a total of 37 spore species (all trilete) distributed among 23 genera. Eleven genera and 19 species of pollen grains are identifiable; of these, bilateral or radial monosaccate pollen grains (17 species) predominate, whereas only two species are bisaccate. As in Azcuy´s (1975a, b) pioneering work on the formation, taeniate pollen grains were not recognized in the current study. However, Gutiérrez and Limarino (2001) have identified a specimen of Striatites sp. in a sample collected from the here-designated Section 3.
Thirty-five species are identified herein for the first time from the Malanzán Formation; viz., Apiculatisporis variornatus, Apiculiretusispora alonsoi, Caheniasaccites densus, Colpisaccites granulosus, Costatascyclus crenatus, Cristatisporites inconstans, C. rollerii, Cyclogranisporites firmus, C. plicatus, C. rinconadensis, Dibolisporites disfacies, Divarisaccus stringoplicatus, Grossusporites microgranulatus, Leiotriletes tiwarii, Limitisporites rectus, Microreticulatisporites punctatus, Plicatipollenites gondwanensis, P. trigonalis, Potonieisporites barrelis, P. densus, P. neglectus, Punctatisporites gretensis, P. irrasus, P. priscus, Reticulatisporites magnidictyus, Verrucosisporites andersonii, Granulatisporites sp. cf. G. austroamericanus, Peppersites sp. cf. P. ellipticus, Potonieisporites sp. cf. P. jayantiensis, Raistrickia sp. cf. R. radiosa, Cristatisporites sp., Endosporites sp. Grandispora sp., Retusotriletes sp. 1, and Retusotriletes sp. 2. This increases appreciably the number of reported Malanzán species.
Organic-walled microfossils identified as Tetraporina punctata are referred to the charophycean algal Family Zygnemataceae, which is interpreted by several authors (e.g., Colbath and Grenfell, 1995; Grenfell, 1995; Geel and Grenfell, 1996) as a freshwater inhabitant. On the other hand, the presence of Navifusa is a likely indicator of marine environments, and Botryococcus occurs in habitats of variable salinity as well as in freshwater or brackish environments (Guy- Ohlson, 1992; Brenner and Foster, 1994; Batten and Grenfell, 1996). The presence of these palynomorphs reinforces the interpretation of a transitional, fjordtype depositional environment, as previously suggested (Buatois and Mangano, 1995; Gutiérrez and Limarino, 2001; Limarino et al. 2002).

Comparison and age of the association

Several spore-pollen species typically found in Mid Carboniferous sequences of Argentina and Brazil occur in the studied samples. The most important are Apiculatisporis variornatus, Apiculatasporites parviapiculatus, Apiculiretusispora alonsoi, Convolutispora muriornata, Raistrickia densa, Reticulatisporites passaspectus, Plicatipollenites malabarensis, P. trigonalis, P. gondwanensis, Potoniesporites barrelis, P. brasiliensis, P. densus, P. magnus, P. neglectus, Circumplicatipollis plicatus, and Crucisaccites monoletus. The presence of pollen grains in the Malanzán Formation supports an age not older than Serpukhovian, because the first worldwide records of pollen grains occur in this uppermost Mississippian stage (Brugman et al., 1985; Loboziak and Clayton, 1988; Clayton et al., 1990; Zhu, 1993; Clayton, 1995).
Based on its palynological content, the Malanzán Formation is referred to the Raistrickia densa-Convolutispora muriornata Biozone (DM), proposed for western Argentina by Césari and Gutiérrez (2001). Furthermore, the scarcity of taeniate pollen grains would suggest a restriction to the Sub-Biozone A of the DM Biozone, dated as Serpukhovian (Césari and Gutiérrez, 2001; Gutiérrez et al., 2003).
The studied palynoflora shows strong similarities to the assemblages described from the Agua Colorada, Guandacol and El Trampeadero formations; however, only broad similarities were found with those reported from the Lagares and Jejenes formations (figure 7). The palynoflora of the lower member of the Agua Colorada Formation at the Las Gredas locality (Limarino and Gutiérrez, 1990) shares with the Malanzán assemblages stratigraphically important spore species such as Convolutispora muriornata, Reticulatisporites asperidictyus and R. magnidictyus, together with an important complement of pollen species (figure 7, 1A). Assemblages from the upper part of the Agua Colorada Formation differ in containing taeniate pollen grains (Gutiérrez, 1993). The Guandacol Formation's assemblages (Césari and Vázquez-Nístico, 1988; Ottone and Azcuy, 1990; Ottone, 1991; Césari and Limarino, 2002; Perez Loinaze, 2007) share with those of the Malanzán Formation a substantial number of spore species. These are Anapiculatisporites concinnus, Apiculatisporis variornatus, Apiculiretusispora alonsoi, Convolutispora muriornata, Cyclogranisporites rinconadensis, C. firmus, Dibolisporites disfacies, Raistrickia densa, Reticulatisporites asperidictyus, and R. magnidictyus (figure 7). The palynoflora described by Gutiérrez and Barreda (2006) from the El Trampeadero Formation (La Cébila Creek, La Rioja Province) shares several spore species with the Malanzán assemblages, including Convolutispora muriornata, Raistrickia densa, Dibolisporites disfacies, Reticulatisporites asperidictyus, R. magnidictyus, and many pollen species (figure 7). Only a few species are shared between the Malanzán and the lower part of the Lagares Formation: Apiculatasporites caperatus, Apiculiretusispora ralla, Cannanoropollis densus, and C. mehtae (Menéndez and Azcuy, 1969, 1971, 1973; Azcuy and Gutiérrez, 1983; see figure 7). On the other hand, Convolutispora muriornata and Anapiculatisporites concinnus (=Anapiculatisporites argentinensis) are the only two species in common between the former unit and the middle and upper sections of the Lagares Formation (Césari and Gutiérrez, 1985; Gutiérrez and Césari, 1989). In addition, as shown in figure 7 and by reference to González-Amicón (1973), Gutiérrez and Césari (1987), and Césari and Bercowski (1997), six species are shared with the palynofloras reported from the lower sections of the Jejenes Formation (e.g., Apiculatisporis variornatus, Grossusporites microgranulatus and Reticulatisporites asperidictyus); and a further seven species from the upper section (Apiculatasporites caperatus, Apiculiretusispora ralla, Cannanoropollis densus, Convolutispora muriornata, Microreticulatisporites punctatus, Plicatipollenites malabarensis and Punctatisporites gretensis).


Figure 7. Stratigraphic distribution of the identified species/ distribución estratigráfica de las especies identificadas: 1= Agua Colorada Formation / Formación Agua Colorada, A- Lower member / miembro inferior (Azcuy et al., 1982; Limarino et al., 1984; Limarino and Gutiérrez, 1990; Vergel and Luna, 1992, Gutiérrez, 1993; Vergel et al., 1993), B- Middle and upper sections / sección media y superior (Menéndez, 1965; Menéndez and González-Amicón, 1979; Gutiérrez, 1993); 2= Jejenes Formation / Formación Jejenes, ALower section / sección inferior (Césari and Bercowski, 1997), BMiddle and upper sections / sección media y superior (González- Amicón, 1973; Gutiérrez and Césari, 1987); 3= Lagares Formation / Formación Lagares, A- Lower section / sección Inferior (Menéndez and Azcuy, 1969, 1971, 1973; Azcuy and Gutiérrez, 1983), BMiddle and upper sections / sección media y superior (Césari and Gutiérrez, 1985, Morelli et al., 1984; Gutiérrez and Césari, 1989); 4= Guandacol Formation / Formación Guandacol (Césari and Vázquez- Nístico, 1988; Ottone and Azcuy, 1990; Ottone, 1991; Césari and Limarino, 2002; Perez Loinaze, 2007); 5= Trampeadero Formation / Formación Trampeadero (Barreda, 1986; Moreno, 1993; Bossi, 1999; Gutiérrez and Barreda, 2006).

The palynological assemblages recovered from the Guandacol and Trampeadero formations and those from the lower part of the Jejenes, Lagares and Agua Colorada formations were included in the Subzone A of the DM Biozone, characterized by the presence of Convolutispora muriornata and Raistrickia densa and the absence of striate pollen grains (Césari and Gutiérrez, 2001).
It is noteworthy that Reticulatisporites magnidictyus was widely reported in the late Viséan, but in Argentina occurs in younger palynofloras (Serpukhovian) belonging to Subzone A of the DM Biozone (e.g., Limarino and Gutiérrez, 1990; Ottone, 1991; Gutiérrez and Barreda, 2006; Perez Loinaze, 2007). Other species that may also have stratigraphic significance are Reticulatisporites asperidictyus and Dibolisporites disfacies recently identified in assemblages referred to the DM Biozone (e.g., Gutiérrez and Limarino, 2001; Gutiérrez and Barreda, 2006; Perez Loinaze, 2007).
Souza (2006) proposed two new interval biozones for Pennsylvanian deposits of the northeastern Paraná Basin. The older, the Ahrensisporites cristatus Biozone (dated as late Bashkirian to Kasimovian), shares with the Malanzán palynoflora many species, such as Anapiculatisporites concinnus (=Anapiculatisporites argentinensis), Cristatisporites menendezii, Raistrickia rotunda, R. paganciana, Convolutispora muriornata, and some pollen species, but differs in its content of taeniate pollen grains (Protohaploxypinus).
Jones and Truswell (1992) identified five Oppelzones in the Joe Joe Group of the Galilee Basin, Australia. The oldest, the Verrucosisporites basiliscutis Oppel- zone dated as early Namurian, shares with the Malanzán palynoflora only two species (i.e., Cannanoropollis janakii and Cyclogranisporites firmus). The slightly younger Brevitriletes leptoacaina Oppelzone (Namurian-?early Westphalian) has only one species (D. disfacies) in common with the Malanzán assemblages. Both Australian Oppel-zones are characterized, as the Malanzán palynoflora, by the complete absence of taeniate pollen grains.
The base of the Australian Spelaeotriletes ybertii Assemblage (Kemp et al., 1977) and the Diatomozonotriletes birkheadensis Assemblage (Powis, 1984) are marked by the first appearance of monosaccate pollen grains. However, occurrence of taeniate pollen grains in these Australian Spelaeotriletes ybertii and Diatomozonotriletes birkiadensis assemblages preclude their correlation with the Malanzán palynoflora.

Conclusions

A total of 37 spore and 19 pollen species have been identified in the analysed samples of the Malanzán Formation, as exposed at the La Chimenea locality in the Olta valley and at the Cuestita de la Herradura locality in the Malanzán valley. Thirty-five species of these species have not been recovered so far from the Malanzán Formation. Furthermore, pollen grains are illustrated for the first time for this unit.
The co-occurrence of the stratigraphically significant spore species as Convolutispora muriornata and Raistrickia densa, and a great number of pollen species, clearly indicate a Serpukhovian age for the Malanzán Formation, and confirms (apropos of Césari and Gutiérrez, 2001) its attribution to the Sub-Biozone A of the Raistrickia densa-Convolutispora muriornata Biozone. The Malanzán palynoflora can be correlated with those described from the Guandacol and El Trampeadero formations, and with those from the lower parts of the Jejenes, Lagares and Agua Colorada formations.
The scarce presence of Navifusa sp., together with brackish water algae and the predominance of terrestrial palynomorphs testified the interpretation of the Malanzán Formation as deposited in a fjord environment.

Acknowledgements

Thanks are due to S.N. Césari for her critical comments and useful suggestions during all phases of this work; O. Limarino for his invaluable help; and E. Vera for reading the manuscript. Thanks are extended to P.R. Gutiérrez and G. Playford , for their enriching comments and suggestions as referees. Funding for this work was provided by the Agencia Nacional de Promoción Científica y Técnica, PICT 20752 and CONICET PIP 5723.

References

1. Andreis, R.R., Archangelsky, S. and Leguizamón, R.R. 1986. El paleovalle de Malanzán: nuevos criterios para la estratigrafía del Neopaleozoico de la sierra de Los Llanos, La Rioja, República Argentina. Boletín de la Academia Nacional de Ciencias (Córdoba) 57: 1-119.         [ Links ]

2. Archangelsky, S. and Gamerro, J.C. 1979. Palinología del Paleozoico superior en el subsuelo de la Cuenca Chacoparanense, República Argentina. I. Estudio sistemático de los palinomorfos de tres perforaciones de la provincia de Córdoba. Revista Española de Micropaleontología 11: 417-478.         [ Links ]

3. Archangelsky, S., Azcuy, C.L., Césari, S., González, C.R., Hünicken, M., Sabattini, N. and Mazzoni, A. 1996. Correlación y edad de las biozonas. In: S. Archangelsky (ed.), El Sistema Pérmico en la República Argentina y en la República Oriental del Uruguay. Academia Nacional de Ciencias (Córdoba), 203-226 pp.         [ Links ]

4. Azcuy, C.L. 1975a. Miosporas del Namuriano y Westfaliano de la comarca Malanzán - Loma Larga, provincia de La Rioja, Argentina. I. Localización geográfica y geológica de la comarca y descripcion es sistemáticas. Ameghiniana 12: 1-69.         [ Links ]

5. Azcuy, C.L. 1975b. Miosporas del Namuriano y Westfaliano de la comarca Malanzán- Loma Larga, provincia de La Rioja, Argentina. II. Descripciones sistemáticas y significado estratigráfico de las microfloras. Ameghiniana 12: 113-163.         [ Links ]

6. Azcuy, C. and Gutiérrez, P.R. 1983. Miosporas seleccionadas de algunas secuencias carbónicas de Argentina. 3º Congreso Argentino de Paleontología y Bioestratigrafía (Corrientes, 1982), Actas 1: 47-52.         [ Links ]

7. Azcuy, C.L. and Morelli, J.R. 1970. Geología de la comarca de Paganzo - Amaná. El Grupo Paganzo, formaciones que lo componen y sus relaciones. Revista de la Asociación Geológica Argentina 25: 405-429.         [ Links ]

8. Azcuy, C.L., Gutiérrez, P.R. and Barreda, V.D. 1982. Algunas miosporas carbónicas de la Formación Agua Colorada, provincia de La Rioja. Ameghiniana 19: 289-302.         [ Links ]

9. Backhouse, J. 1988. Permian trilete spores from the Collie Basin, Western Australia. Memoirs of the Association of Australasian Palaeontologists 5: 53-72.         [ Links ]

10. Balme, B.E. and Hennelly, J.P.F. 1956. Trilete sporomorphs from Australian Permian sediments. Australian Journal of Botany 4: 240-260.         [ Links ]

11. Barreda, V.D. 1986. Palinología de la Formación Trampeadero, Paleozoico Superior, provincia de La Rioja. 4º Congreso Argentino de Paleontología y Bioestratigrafía (Mendoza), Actas 1: 211-219.         [ Links ]

12. Batten, D.J. and Grenfell, H.R. 1996. Chapter 7D. Botryococcus. In: J. Jansonius and D.C. McGregor (eds.), Palynology: principles and applications, American Association of Stratatigraphic Palynologists Foundation 1: 205-214.         [ Links ]

13. Bharadwaj, D. 1965. On the organization of Spencerisporites Chaloner and Endosporites Wilson and Coe with remarks in their systematic position. The Palaebotanist 12: 18-27.         [ Links ]

14. Bharadwaj, D.C. and Salujha, S.K. 1965. A sporological study of seam VII (Jote Dhemo Colliere) in the Raniganj Coalfield, Bihar (India). The Palaeobotanist 13: 30-41.         [ Links ]

15. Bose, M.N. and Maheshwari, H.K. 1968. Palaeozoic Sporae Dispersae from Congo VII. Coal measures near Lake Tanganyika, south of Albertville. Annals du Musée Royal du Congo Belge, Sciences, Geologisques serie 60: 1-116.         [ Links ]

16. Bossi, G.E. 1999. Estratigrafía del Gondwaniano en la quebrada de La Cébila. In: G. González Bonorino, R. Omarini and J. Viramonte (eds.), 4º Congreso Geológico Argentino (Salta), Geología del Noroeste Argentino, Relatorio 1: 235-236.         [ Links ]

17. Bracaccini, O. 1946. Contribución al conocimiento geológico de la Precordillera Sanjuanino-Mendocina. Boletín de Informaciones Petroleras 258: 81-105.         [ Links ]

18. Bracaccini, O. 1948. Los Estratos de Paganzo y sus niveles plantíferos en la sierra de Los Llanos (provincia de La Rioja). Revista de la Sociedad Geológica Argentina 1: 19-61.         [ Links ]

19. Brenner, W. and Foster, C.B. 1994. Chlorophycean algae from the Triassic of Australia. Review of Palaeobotany and Palynology 80: 209-234.         [ Links ]

20. Brugman, W.A., Eggink, J.W., Loboziak, S. and Visscher, H. 1985. Late Carboniferous-Early Permian (Ghzelian-Artinskian) palynomorphs. Journal of Micropalaeontology 4: 93-106.         [ Links ]

21. Buatois, L.A. and Mángano, M.G. 1995. Sedimentary dynamics and evolutionary history of a Late Carboniferous Gondwanic lake in north-western Argentina. Sedimentology 42: 415-436.         [ Links ]

22. Butterworth, M.A. and Mahdi, S.A. 1982. Namurian and basal Westphalian A miospores assemblages from the Featherstone area, northern England. Pollen et Spores 24: 481-510.         [ Links ]

23. Butterworth, M.A., Jansonius, J., Smith, A.V.H. and Staplin, F.L. 1964. Densosporites (Berry) Potonié and Kremp and related genera. 5º Congrès International de la Stratigraphie et Géologie du Carbonifère et Permien (Paris), Comptes Rendus 1: 1049-1057.         [ Links ]

24. Césari, S.N. and Bercowski, F. 1997. Palinología de la Formación Jejenes (Carbonífero) en la quebrada de Las Lajas, provincia de San Juan, Argentina. Nuevas inferencias paleoambientales. Ameghiniana 34: 497-510.         [ Links ]

25. Cesari, S.N. and Gutiérrez, P.R. 1985. Microflora de la localidad de los Mogotes Colorados (Paleozoico Superior), Cuenca Paganzo, República Argentina. Boletím del Instituto de Geociências de la Universidade de Sâo Paulo 15: 20-31.         [ Links ]

26. Césari, S. N and Gutiérrez, P.R 2001. Palynostratigraphy of Upper Paleozoic sequences in central-western Argentina. Palynology 24: 113-146.         [ Links ]

27. Césari, S. N. and Limarino, C. O. 1987. Análisis estratigráfico del perfil de la quebrada de La Cortadera (Carbonífero), Sierra de Maz, La Rioja, Argentina. 4º Congreso Latinoamericano de Paleontolología y Bioestratigrafía (Bolivia), Memorias 1: 315-330.         [ Links ]

28. Césari, S.N. and Limarino, C.O. 2002. Palynology of glacial sediments from the Guandacol Formation (Middle Carboniferous) in the Cerro Bola area, Paganzo Basin, Argentina. Alcheringa 26: 159-176.         [ Links ]

29. Césari, S.N. and Vázquez-Nístico, B. 1988. Palinología de la Formación Guandacol (Carbonífero), provincia de San Juan, República Argentina. Revista Española de Micropaleontología 20: 39-58.         [ Links ]

30. Césari, S.N., Meza, J.C. and Melchor, R.N. 1996. Primer registro palinológico de la Cuenca Pérmica Oriental (Formación Yacimiento Los Reyunos), Mendoza, Argentina. 13º Congreso Geológico Argentino y 3º Congreso de Exploración de Hidrocarburos (Mendoza), Actas 5: 49-63.         [ Links ]

31. Clayton, G. 1995. Carboniferous miospore and pollen assemblages from the Kingdom of Saudi Arabia. Review of Palaeobotany and Palynology 89: 115- 123.         [ Links ]

32. Clayton, G., Loboziak, S., Streel, M., Turnau, E. and Utting, J. 1990. Palynological events in the Mississippian (Lower Carboniferous) of Europe, North Africa and North America. Courier Forschungsinstitut Senckenberg 130: 79-84.         [ Links ]

33. Colbath, G.K. and Grenfell, H.R. 1995. Review of biological affinities of palaeozoic acidresistant, organic walled eukaryotic algal microfossils (including "acritarchs"). Review of Palaeobotany and Palynology 86: 287-314.         [ Links ]

34. di Pasquo, M.M. 2003. Avances sobre palinología, bioestratigrafía y correlación de las asociaciones presentes en los Grupos Macharetí y Mandiyutí, Neopaleozoico de la Cuenca Tarija, provincia de Salta, Argentina. Ameghiniana 40: 3-32.         [ Links ]

35. di Pasquo, M., Azcuy, C. and Souza, P. 2003. Palinología del Carbonífero Superior del Subgrupo Itararé en Itaporonga, Cuenca Paraná, Estado de São Paulo, Brasil. Parte 1: sistemática de esporas y paleofitoplancton. Ameghiniana 40: 277-296.         [ Links ]

36. Dino, R. and Playford, G. 2002a. Miospores common to South American and Australian Carboniferous sequences: stratigraphic and phytogeographic implications. In: L.V. Hills, C.M.Henderson y E.W. Bamber. (eds.), Carboniferous and Permian of the World: XIV ICCP Proceedings, Canadian Society of Petroleum Geologist, Memoir, 19: 336-359.         [ Links ]

37. Dino, R. and Playford, G. 2002b. Stratigraphic and Palaeoenvironmental significance of a Pennsylvanian (Upper Carboniferous) palynoflora from the Piauí Formation, Parnaíba Basin, northeastern Brazil. Palaeontological Research 6: 23-40.         [ Links ]

38. Dueñas, H. and Césari, S.N., 2005. Systematic study of Early Carboniferous palynological assemblages from the Llanos Orientales Basin, Colombia. Revista del Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Nueva serie 7: 139-152.         [ Links ]

39. Felix, C.J. and Burbridge, P.P. 1967. Palynology of the Springer Formation of southern Oklahoma, U.S.A. Palaeontology 10: 349-425.         [ Links ]

40. Foster, C.B. 1975. Permian plant microfossils from the Blair Athol Coal Measures, central Queenland, Australia. Palaeontographica Abteilung B 154: 121-171.         [ Links ]

41. Foster, C.B. 1979. Permian plant microfossils from the Blair Athol Coal Measures, Baralaba Coal Measures, and basal Rewan Formation of Queensland. Geological Survey of Queensland, Publication 372, Paleontological Paper 45: 1-244.         [ Links ]

42. Furque, G. 1968. Bosquejo geológico de la Sierra Malanzán, La Rioja. 3º Jornadas Geológicas Argentinas (Comodoro Rivadavia), Actas 1: 110-120.         [ Links ]

43. García, G.B. 1995. Palinología de la Formación El Imperial, Paleozoico Superior, Cuenca San Rafael, Argentina. Parte I: esporas. Ameghiniana 32: 315-339.         [ Links ]

44. Geel, B. van and Grenfell, H.R. 1996. Chapter 7A. Spores of Zygnemataceae. In: J. Jansonius and D.C. McGregor (eds.), Palynology: principles and applications, American Association of Stratatigraphic Palynologists Foundation 1: 173-179.         [ Links ]

45. González-Amicón, O.R. 1973. Microflora carbónica de la localidad de Retamito, provincia de San Juan. Ameghiniana 10: 1-36.         [ Links ]

46. Gupta, S. 1969. Palynology of the Upper Strawn Series (Upper Pennsylvanian) of Texas above the Fusulina Zone. Palaeontographica Abteilung B 125: 150-195.         [ Links ]

47. Grenfell, H.R. 1995. Probable fossil zygnematacean in Quaternary Columbia sediments. Review of Paleobotany and Palynology 84: 201-200.         [ Links ]

48. Gutiérrez, P.R. 1993. Palinología de la Formación Agua Colorada (Carbonífero Superior), sierra de Famatina, provincia de La Rioja, Argentina. I. Granos de polen. Ameghiniana 30: 163-212.         [ Links ]

49. Gutiérrez, P.R. and Barreda, V.D. 2006. Palinología de la Formación El Trampeadero (Carbonífero Superior), La Rioja, Argentina: significado bioestratigráfico. Ameghiniana 43: 71-84.         [ Links ]

50. Gutiérrez, P.R. and Césari, S.N. 1987. Nuevos elementos microflorísticos de la Formación Jejenes (Carbónico), provincia de San Juan. 1º Jornadas sobre geología de Precordillera, (San Juan, 1985), Resúmenes 1: 168-173.         [ Links ]

51. Gutiérrez, P.R. and Césari, S.N. 1989. Nuevas microfloras de la Formación Lagares (Carbonífero), provincia de La Rioja, República Argentina. Ameghiniana 25: 85-96.         [ Links ]

52. Gutiérrez, P.R. and Limarino, C.O. 2001. Palinología de la Formación Malanzán (Carbonífero Superior), La Rioja, Argentina: nuevos datos y consideraciones paleoambientales. Ameghiniana 38: 99-118.         [ Links ]

53. Gutiérrez, P.R., Di Pasquo, M. and Vergel, M. 2003. Palinoestratigrafía del Carbonífero-Pérmico de la Argentina: estado actual del conocimiento. Revista del Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Nueva serie 5: 185-196.         [ Links ]

54. Gutiérrez, P.R., Beri, A., Balarino, M.L. and Cernuschi, F. 2006. Palinología del Permico Inferior en la Perforación DCLS-24 (Formación San Gregorio), Departamento de Cerro Largo, Uruguay. Parte II: Granos de polen. Ameghiniana 43: 611-635.         [ Links ]

55. Guy-Ohlson, D. 1992. Botryococcus as an aid in the interpretation of paleoenvironment and depositional processes. Review of Palaeobotany and Palynology 71: 1-15.         [ Links ]

56. Hacquebard, P.A. 1957. Plant spores in coal from the Horton Group (Mississippian) of Nova Scotia. Micropaleontology 3: 301-324.         [ Links ]

57. Hoffmeister, W. S., Staplin, F.L. and Malloy, R.E. 1955. Mississippian plant spores from the Hardinsburg Formation of Illinois and Kentucky. Journal of Palaeontology 29: 372-399.         [ Links ]

58. Ibrahim, A.C. 1933. [Sporenformen des Agirhorizontes des Ruhrreviers. Konrad Triltsch Wurzburg Ph.D. Thesis. Berlin, 47 pp. (Unpublished)].         [ Links ]

59. Jones, M.J. and Truswell, E.M. 1992. Late Carboniferous and Early Permian palynostratigraphy of the Joe Joe Group, southern Galilee Basin, Queensland, and implications for Gondwana stratigraphy. Journal of Australian Geology and Geophysics 13: 143-185.         [ Links ]

60. Kar, R.K. and Bose, M.N. 1976. Palaeozoic Sporae Dispersae from Zaire (Congo). XIII. Assise a couches de houille from Greinerville region. Musée Royal de l'Afrique Centrale, Annales, Serie in 8º, Sciences Geologiques 77: 21-133.         [ Links ]

61. Kemp, E.M., Balme, B.E., Helby, R.J., Kyle, R.A., Playford, G. and Price, P.L. 1977. Carboniferous and Permian palynostratigraphy in Australia and Antartica: a review. Journal of Australian Geology and Geophysics 2: 177-208.         [ Links ]

62. Knox, E.M. 1950. The spores of Lycopodium, Phylloglossum, Selaginella and Isoetes, and their value in the study of microfossils of Palaeozoic age. Transactions and Proceedings of the Botanical Society Edinburgh 35: 209-357.         [ Links ]

63. Lele, K.M. 1964. Studies in the Talchir flora: 2. Resolution of the spore genus Nuskoisporites Pot. & Kl. The Palaeobotanist 12: 147- 168.         [ Links ]

64. Lele, K.M. and Karim, R. 1971. Studies in the Talchir flora of India - 6. Palynology of the Talchir Boulder Beds in Jayanti Coalfield, Bihar. The Palaeobotanist 19: 52-69.         [ Links ]

65. Lele, K.M. and Makada, R. 1972. Studies in the Talchir flora of India - 7. Palynology of the Talchir Formation in the Jayanti Coalfield, Bihar. Geophytology 2: 41-73.         [ Links ]

66. Leschik, G. 1956. Sporen aus dem Salzton des Zechsteins von Neuhof (bei Fulda). Palaeontographica Abteilung B 100: 122-142.         [ Links ]

67. Limarino, C.O. and Césari, S. 1988. Paleoclimatic significance of the lacustrine Carboniferous deposits in northwest Argentina. Palaeogeography, Palaeoclimatology and Palaeoecology 65: 115-131.         [ Links ]

68. Limarino, C.O. and Gutiérrez, P.R. 1990. Diamictites in the Agua Colorada Formation (northwestern Argentina): New evidence of Carboniferous glaciation in South America. Journal of South American Earth Sciences 3: 9-20.         [ Links ]

69. Limarino, C., Gutiérrez, P. and Césari, S. 1984. Facies lacustres de la Formación Agua Colorada (Paleozoico superior): aspectos sedimentológicos y contenido paleoflorístico. 9º Congreso Geológico Argentino, (Bariloche) Actas 5: 324-341.         [ Links ]

70. Limarino, C., Césari, S. and López Gamundí, O. 1996. Las fases climáticas del Paleozoico superior del oeste argentino: su expresión estratigráfica y valor como herramienta de correlación. 13º Congreso Geológico Argentino y 3º Congreso de Explotación de Hidrocarburos (Buenos Aires) Actas 1: 495-509.         [ Links ]

71. Limarino, C., Césari, S., Net, L., Marenssi, S., Gutiérrez, P. and Tripaldi, A. 2002. The upper Carboniferous postglacial transgression in the Paganzo and Río Blanco basins (northwestern argentina): facies and stratigraphic significance. Journal of South American Earth Sciences 15: 445-460.         [ Links ]

72. Loboziak, S. and Clayton, G. 1988. The Carboniferous palynostratigraphy of northeast Libya. In: A. El-Arnauti, B. Owens and B. Thusu (eds.), Subsurface Palynostratigraphy of Northeast Libya, Garyounis University, AGOCO/CIMP, Benghazi, 129- 149 pp.         [ Links ]

73. Longhim, M.E., Souza, P.A. and Rohn, R. 2002. Palinologia do Grupo Itararé na região de Salto (Carbonífero Superior), estado de São Paulo, Brasil. Parte 1-Palinologia Sistemática. Geociencias 8: 43-60.         [ Links ]

74. Maheshwari, H.K. 1967: Studies in the Glossopteris flora of India - 29. Miospore assemblages from the Lower Gondwana exposures along Bansloi River in Rajmahal Hills, Bihar. The Palaeobotanist 15: 258-280.         [ Links ]

75. Maithy, P.K. 1965: Studies in the Glossopteris flora of India - 27. Sporae Dispersae from the Karharbari Beds in the Giridih Coalfield, Bihar. The Palaeobotanist 13: 291-307.         [ Links ]

76. Menéndez, C.A. 1965. Contenido palinológico en sedimentos con "Rhacopteris ovata" (McCoy) Walkom de la Sierra de Famatina, La Rioja. Revista del Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Paleontología 1: 45-80.         [ Links ]

77. Menéndez, C.A. 1971. Estudio palinológico del Pérmico de Bajo de Veliz, provincia de San Luis. Revista del Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Paleontología 1: 271- 306.         [ Links ]

78. Menéndez, C.A. and Azcuy, C.L. 1969 Microflora carbónica de la localidad de Paganzo, provincia de La Rioja. Parte I. Ameghiniana 6: 77-97.         [ Links ]

79. Menéndez, C.A. and Azcuy, C.L. 1971 Microflora carbónica de la localidad de Paganzo, provincia de La Rioja. Parte II. Ameghiniana 8: 25-36.         [ Links ]

80. Menéndez, C.A. and Azcuy, C.L. 1973 Microflora carbónica de la localidad de Paganzo, provincia de La Rioja. Parte III. Ameghiniana 10: 51-72.         [ Links ]

81. Menéndez, C. A. and Gonzalez Amicón, O.R. 1979. Nuevos elementos de la microflora carbónica de "Las Pircas" (Formación Agua Colorada), Sierra de Famatina, La Rioja. Ameghiniana 16: 65-79.         [ Links ]

82. Morelli, J.R., Limarino, C.O., Césari, S.N. and Azcuy, C.L. 1984. Características litoestratigráficas y paleontológicas de la Formación Lagares en los alrededores de la mina Margarita, provincia de La Rioja. 9º Congreso Geológico Argentino, (Bariloche), Actas 4: 337-347.         [ Links ]

83. Moreno, P.E. 1993. Nuevos datos palinológicos de la Formación El Trampeadero (Carbonífero Superior), Catamarca, La Rioja, Argentina. 13º Congresso Brasileiro de Paleontología, 1º Simposio Paleontológico do Come Sul (Sâo Leopoldo), Boletim de Resumos: 217.         [ Links ]

84. Naumova, S.N. 1953. Spore-pollen complexes of the Upper Devonian of the Russian Platform and their stratigraphic significance. Trudy Academy of Sciences U.S.S.R., 143, Geological Series 60: 1-200.         [ Links ]

85. Net, L.I. 1998. Reubicación estratigráfica y significado tectónico del miembro Conglomerado Amarillo Verdoso a Violado (Formación Loma Larga) en la Formación Solca (Paleozoico Superior), provincia de La Rioja, Argentina. 10º Congreso Latinoamericano de Geología y 6º Congreso Nacional de Geología Económica (Buenos Aires), Actas 1: 191-196.         [ Links ]

86. Net, L. 1999. [Petrografía, diagénesis y procedencia de areniscas de la sección inferior del grupo Paganzo (Carbonífero) en la Cuenca Homónima. Tesis Doctoral, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 490 pp. (Unpublished).         [ Links ]].

87. Net, L. and Limarino, C.O. 1999. Paleogeografía y correlación estratigráfica del Paleozoico Tardío de la Sierra de los Llanos, provincia de La Rioja, Argentina. Revista de la Asociación Geológica Argentina 54: 229-239.         [ Links ]

88. Neves, R. and Owens, B. 1966. Some Namurian camerate miospores from the English Pennines. Pollen et Spores 8: 337-360.         [ Links ]

89. Ottone, E.G. 1989. Palynoflores de la Formation Santa Máxima, Paléozoïque Supérieur, République Argentine. Palaeontographica Abteilung B 213: 89-147.         [ Links ]

90. Ottone, E.G. 1991. Palynologie du Carbonifère Supérieur de la coupe de Mina Esperanza, Bassin Paganzo, Argentine. Revue de Micropaléontologie 34: 118-135.         [ Links ]

91. Ottone, E.G. and Azcuy, C.L. 1988. Circumplicatipollis, nuevo género de polen monosacado del Paleozoico Superior de Argentina. Revista Española de Micropaleontología 20: 245-249.         [ Links ]

92. Ottone, E.G., and Azcuy, C.L. 1990. Datos palinológicos de la Formación Guandacol (Carbonífero) en la quebrada de La Delfina, provincia de San Juan, Argentina. Ameghiniana 26: 191-208.         [ Links ]

93. Page, S., Litvak, V. D. and Limarino, C. O. 2002. Nueva edad en el basamento de la sierra de Los Llanos, La Rioja: Intrusividad pampeana en el arco famatiniano. Revista de la Asociación Geológica Argentina 57: 345-348.         [ Links ]

94. Perez Loinaze, V.S. 2007. [Análisis bioestratigráfico sobre la base de estudios palinológicos de la transición Mississippiano - Pennsylvaniano en secuencias de las provincias de San Juan y La Rioja. Tesis Doctoral. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina, 550 pp. Unpublished.         [ Links ]].

95. Perez Loinaze, V.S. 2008. Systematic palynological study of the Cortaderas Formation, (Early Carboniferous) Río Blanco Basin, Argentina. Part Two. Ameghiniana 45: 421-441.         [ Links ]

96. Perez Loinaze, V. and Césari, S. N. 2004. Palynology of the Estratos de Mascasín, Upper Carboniferous, Paganzo Basin, Argentina: systematic descriptions and stratigraphic considerations. Revista Española de Micropaleontología 36: 407-438.         [ Links ]

97. Picarelli, A.T. and Dias-Fabrício, M.E. 1990. Revaliçao de algumas especies do genero Cristatisporites (Potonié e Kremp). Pesquisas 17: 23-30.         [ Links ]

98. Pieters, P. and Skirrow, R.G.1997. 1:250.000 Scale Geological and Metallogenic Maps, Sierras de Las Minas, Chepes y Los Llanos, provincia de La Rioja. Mapeo Geocientífico de las Sierras Pampeanas. Proyecto Argentino-Australiano de Cooperación (AGSOSEGEMAR), 102 pp.         [ Links ]

99. Playford, G. 1962. Lower Carboniferous microfloras of Spitsbergen. Part one. Palaeontology 5: 550-618.         [ Links ]

100. Playford, G. 1978. Lower Carboniferous spores from the Ducabrook Formation, Drummond Basin, Queensland. Palaeontographica Abteilung B 167: 105-160.         [ Links ]

101. Playford, G. and Dino, R. 2000. Palynostratigraphy of upper Palaeozoic strata (Tapajós Group), Amazonas Basin, Brazil: Part one. Palaeontographica Abteilung B 255: 1-46.         [ Links ]

102. Playford, G. and Helby, R. 1968. Spores from a Carboniferous section in the Hunter Valley, New South Wales. Journal of the Geological Society of Australia 15: 103-119.         [ Links ]

103. Potonié, R. and Kremp, G. 1954. Die Gattungen der Paläozoischen Sporae dispersae und ihre stratigraphie. Beihefte zum Geologisches Jahrbuch 69: 111-194.         [ Links ]

104. Potonié, R. and Lele, K.M. 1961. Studies in the Talchir flora of India - 1. Sporae dispersae from the Talchir Beds of South Rewa Gondwana Basin. The Palaeobotanist 8: 22-37.         [ Links ]

105. Potonié, R. and Sah, S.C.D. 1960. Sporae dispersae of the lignites from Cannanore Beach on the Malabar Coast of India. The Palaeobotanist 7: 121-135.         [ Links ]

106. Powis, G.D. 1984. Palynostratigraphy of the Late Carboniferous Sequences, Canning Basin, W.A. In: P.G. Purcell (ed.), Canning Basin W.A. Proceedings of the Geological Society of Australia, PESA Symposium, Perth, 429-438 pp.         [ Links ]

107. Ravn, R.L. 1979. An introduction to the stratigraphic palynology of the Cherokee Group (Pennsylvanian) coals of Iowa. Iowa Geological Survey, Technical Paper 6: 1-117.         [ Links ]

108. Ravn, R.L. 1986. Palynostratigraphy of the Lower and Middle Pennsylvanian coals of Iowa. Iowa Geological Survey, Technical Paper 7: 1-245.         [ Links ]

109. Ravn, R.L. 1991. Miospores of the Kekiktuk Formation (Lower Carboniferous), Endicott field area, Alaska North Slope. American Asociation of Stratigraphic Palynologists Foundation, Contribution Series 27: 1- 173.         [ Links ]

110. Ravn, R.L. and Fitzgerald, D.J. 1982. A Morrowan (Upper Carboniferous) miospore flora from eastern Iowa, U.S.A. Palaeontographica Abteilung B 183: 108-172.         [ Links ]

111. Saxena, R. K. 1993. New names for some palynofossil later homonyms from India. Geophytology 23: 195-196.         [ Links ]

112. Scheuring, B.W. 1974. Kraeuselisporites Leschik and Thomsonisporites Leschik - a revision of the type material of two disputed genera. Review of Paleobotany and Palynology 17: 187- 204.         [ Links ]

113. Schopf, J.M., Wilson, R.L. and Bentall, R. 1944. An annotated synopsis of Paleozoic fossil spores and the definition of generic groups. Report of the Illinois State Geological Survey 91, 66 pp.         [ Links ]

114. Segroves, K.L. 1969. Saccate plant microfossils from the Permian of Western Australia. Grana Palynologica 9: 174- 227.         [ Links ]

115. Souza, P. A. 2000. [Palinobioestratigrafia do Subgrupo Itararé, Carbonífero/Permiano, na porção nordeste da Bacia do Paraná (SP/PR, Brasil) São Paulo. Tese de Doutoramento, Instituto de Geociências/Universidade de São Paulo, 199 p. Unpublished.         [ Links ]].

116. Souza, P.A. 2006. Late Carboniferous palynostratigraphy of the Itararé Subgroup, northeastern Paraná Basin, Brazil. Review of Palaeobotany and Palynology 138: 1-29.         [ Links ]

117. Souza, P. A., Petri, S. and Dino, R. 2003. Late Carboniferous palynology from the Itararé Subgroup (Paraná Basin), at Araçoiaba da Serra, São Paulo State, Brazil. Palynology 27: 39-74.         [ Links ]

118. Staplin, F.L. and Jansonius, J. 1964. Elucidation of some Paleozoic densospores. Palaeontographica Abteilung B 114, 95-117.         [ Links ]

119. Stephenson, M.H. 2004. Early Permian spores from Oman and Saudi Arabia. In: M.I. Al-Husseini (ed.), Carboniferous, Permian and Early Triassic Arabian Stratigraphy, GeoArabia Special Publication 3, Gulf PetroLink, Bahrain, 185-215 pp.         [ Links ]

120. Sterren, A. F. and Martínez, M. 1996. El paleovalle de Olta (Carbonífero): paleoambientes y paleogeografía. 13º Congreso Geológico Argentino y 3º Congreso Exploración de Hidrocarburos (Buenos Aires), Actas 2: 89-103.         [ Links ]

121. Streel, M. 1964. Une association de spores du Givétien inférieur de la Vesdre, à Goe (Belgique). Annales de la Societe Géologique de Belgique 87: 1-30.         [ Links ]

122. Sullivan, H.J. 1964. Miospores from the Drybrook Sandstone and associated measures in the Forest of Dean Basin, Gloucestershire. Palaeontology 7: 57-61.         [ Links ]

123. Tiwari, R.S. 1964. New miospore genera in the coals of Barakar stage (Lower Gondwana) of India. The Palaeobotanist 12: 250- 259.         [ Links ]

124. Tiwari, R.S. 1965. Miospore assemblage in some coals of Barakar stage (Lower Gondwana) of India. The Palaeobotanist 13: 168- 214.         [ Links ]

125. Urban, J.B. 1971. Palynology and the Independence Shale of Iowa. Bulletin of American Palaeontology 60: 103-189.         [ Links ]

126. Vergel, M. del M., Buatois, L.A., and Mángano, M.G. 1993. Primer registro palinológico en el Carbonífero Superior del margen norte de la Cuenca Paganzo, Los Jumes, Catamarca, Argentina. 13º Congrès International de la Stratigraphie et Géologie du Carbonifère et Permien (Buenos Aires, 1991), Comptes Rendus 1: 213-227.         [ Links ]

127. Vergel, M. del M. and Luna, F. 1992. Registros palinológicos en sedimentos del Neopaleozoico de la sierra de Paimán, La Rioja, Argentina. Acta Geológica Lilloana 17: 161-168.         [ Links ]

128. Wilson, L.R. and Coe, E.A. 1940. Descriptions of some unassigned plant microfossils from the Des Moines Series of Iowa. American Midland Naturalist 23: 182-186.         [ Links ]

129. Zhu, H. 1993. A revised palynological sub-division of the Namurian of Jingyuan, northwest China. Review of Palaeobotany and Palynology 77: 273-300.         [ Links ]

Recibido: 11 de noviembre de 2008.
Aceptado: 10 de mayo de 2009.